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Abstract: The precision requirements for cyclic plasticity models are often not very high in industrial ap-
plications, even though the integrity of many components subjected to cyclic plasticity is critical. Despite its
limitations, such as poor prediction of ratcheting behaviour, the Chaboche model remains the most widely used
model of cyclic plasticity. This paper presents the calibration of this model for uniaxial and multiaxial cyclic
data on 304 stainless steel. The model incorporates a strain memory surface dependence to account for pro-
nounced cyclic hardening. Resulting simulations carried out by calibrated model are used to highlight some of
the modelling limitations.
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1. Introduction

Cyclic plasticity, characterized by alternating plastic deformation, is a material behaviour observed in var-
ious engineering applications, including structural components in engines and piping systems. Its accurate
modelling through numerical simulations is essential to predict material performance and ensure structural
reliability. One of the most commonly used material models for cyclic plasticity is the Chaboche model, or
Chaboche kinematic hardening rule, proposed by Chaboche et al. (1979), particularly because of its sim-
plicity and availability in commercial software packages. One of the drawbacks of this model is its tendency
to overpredict the ratcheting behaviour. This paper demonstrates that for certain materials, specifically 304
stainless steel, the Chaboche model can provide a reasonable prediction of ratcheting. Uniaxial and mul-
tiaxial ratchetings are studied. Therefore, the Chaboche model with modification proposed by Delobelle
et al. (1995), which has no effect for uniaxial loading, is adopted. The complexity of the model is further
increased by incorporating strain memory surface, initially introduced by Chaboche et al. (1979) and later
refined through the addition of an evanescent term by Nouailhas et al. (1985).

2. Experiments

The experimental data for the 304 stainless steel used in this paper were taken from Hassan and Kyriakides
(1994). These comprised 1 single-amplitude uniaxial strain-controlled test with a strain amplitude of 0.01,
6 uniaxial stress-controlled tests with varying stress amplitudes and mean stresses having mean stresses ±
stress amplitudes of 19 ± 236 MPa, 36 ± 220 MPa, 36 ± 236 MPa, 36 ± 250 MPa, 36 ± 268 MPa and
47 ± 236 MPa and 3 biaxial strain-controlled tests with constant internal pressure, all with the same strain
amplitude of 0.005 and different internal pressures resulting in circumferential stresses σθ of 28, 56 and
79 MPa.
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3. Constitutive modelling

The present constitutive modelling follows a small strain theory, additive law defining the increment of the
strain tensor dε, Hooke’s law defining the increment of the elastic strain tensor dεe, associative flow rule
defining the increment of the plastic strain tensor dεp with the assumption of the von Mises yield function
and combined hardening as

dε = dεe + dεp =
1 + ν

E
dσ − ν

E
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where ν is the Poisson’s ratio, E is the Young’s modulus, dσ is the increment of the stress tensor, tr() is
the trace of the tensor, I is the unity tensor, s is the deviatoric stress tensor, a is the deviatoric backstress
tensor, σy is the yield stress, R is the isotropic hardening and dp is the increment of the accumulated plastic
strain. The von Mises yield function assumes the combined hardening as
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where : is the double dot product. The yield surface evolves according to the combination of Voce isotropic
hardening defined as

dR = b (Q−R) dp, (3)

where b and Q are the material parameters and Chaboche kinematic hardening with the modification by
Delobelle et al. (1995) defined as
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where Ci, γi (q) and δ′ (q) are the material parameters, q is the radius of the strain memory surface and n is
normal to the yield surface defined as
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√
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. (5)

The formulation of the strain memory surface that accounts for a possible reduction in the surface size
governed by an evanescent term is defined as
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where g is the strain memory surface function, Y is the centre of the strain memory surface, η, ζ and m
are the material parameters, <> are the Macaulay brackets, H() is the Heaviside step function and n? is
the normal to the strain memory surface. The strain memory surface dependence was introduced into the
model through the evolution as

dγi = Dγi

(
aγi + bγie

−cγiq − γi
)
dp, (10)

dδ′ = Dδ′
(
aδ′ + bδ′e

−cδ′q − δ′
)
dp, (11)

where aγi , bγi , cγi , Dγi , aδ′ , bδ′ , cδ′ and Dδ′ are the material parameters. Both γi and δ′ start at certain
initial values, which are also material parameters.
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4. Calibration of the model and numerical simulations

The evolution of three backstresses with respect to the strain memory surface and Voce isotropic hardening
were assumed, so the model has 33 material parameters in total. The calibration of the model was divided
into two phases. First, an initial guess of the material parameters was made. Then, refinement of the
material parameters was performed with an optimization algorithm that iteratively simulates experimental
conditions with varying sets of material parameters and evaluates their accuracy. This process was carried
out in two phases. In the first phase, all material parameters were optimized except for the elastic constants,
which were estimated directly from experiments, and for the material parameters that control the evolu-
tion of δ′. The error function was designed to minimize the difference between numerical simulations and
experimental for both uniaxial strain- and stress-controlled tests. The critical features to capture included
the shape of the stabilized loop in the uniaxial strain-controlled test and the stabilized ratcheting rates in
the stress-controlled tests, while secondary considerations encompassed the evolution of loop shapes in the
strain-controlled test, the stabilized loop shapes in the stress-controlled tests and the monotonic responses.
Given the large number of material parameters optimized in the first phase, a population-based method was
used, namely, differential evolution. During the second phase, only 5 material parameters controlling the
evolution of δ′, which are relevant only in multiaxial loading, were optimized. The optimization algorithm
was changed to Bayesian optimization using Gaussian process regression and probability of expected im-
provement and acquisition function due to the longer simulation time and the fewer material parameters
being optimized. The calibrated model was used for the numerical simulations below. Left Fig. 1 shows
a simulation of uniaxial strain-controlled test, where both the shape of the stabilized loop and the evolution
of the loops were well simulated. However, the model was unable to fit the monotonic response.
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Fig. 1: Uniaxial strain-controlled (left) and stress-controlled (right) tests
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Fig. 2: Positive peaks of plastic strain for uniaxial stress-controlled tests
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Fig. 2 shows that the model was able to fit the stabilized ratcheting rate for all experiments. The shape of
the stabilized loops was also well simulated (left Fig. 3). However, the positive peaks of plastic strain of the
experiments and simulations differed significantly for some experiments. This was caused by the simulated
transient behaviour, a distinctive feature of the Chaboche model, caused by the decay of the ratcheting rate
in the stabilization process of the mean values of individual backstresses. It is depicted in right Fig. 1,
where the individual backstress components α1, . . . , α4 are shown for the simulation of a uniaxial stress-
controlled experiment. The differences were also due to the poor fit of the monotonic response, which is
due to the use of a very small γ4 to compensate for the tendency of the Chaboche model to overpredict the
ratcheting rate. The monotonic response is often different from the cyclic one due to the loading prehistory.
Furthermore, the precise fit of the monotonic response is often neglected to some extent because it can vary
between specimens. Then, even small deviations in stress can cause quite large deviations in plastic strain
for stress-controlled loading. Moreover, right Fig. 3 shows positive peaks of circumferential strain from
biaxial ratcheting experiments with the stabilized ratcheting rates simulated quite well for all tests.

Experiment
Simulation

σθ = 79 MPa

Cycles [–]
200 40 60 80 100

σθ = 56 MPa

σθ = 28 MPa

Strain ×10−2 [–]

C
ir

cu
m

fe
re

nt
ia

ls
tr

ai
n
×

10
−

2
[–

]

St
re

ss
[M

Pa
]

0 0.5 1 1.5 2 2.5 3
−250

−125

0

125

250

375

0.25

0.75

1.25

1.75

2.2519±
236

36±
220

36±
236

36±
250

36±
268

47±
236

Fig. 3: Loops of stress-controlled (left) and positive peaks of circumferential strain of biaxial (right) tests

5. Conclusions

This paper showed that the modified Chaboche model is able to satisfactorily predict both uniaxial and
multiaxial ratcheting rates in the case of 304 stainless steel. The main weakness of the prediction is the
incorrect plastic strains. This reason was identified to be the transient behaviour of the model in case
of uniaxial simulations and the inability to choose a correct value of the last material parameter of the
kinematic hardening to fit the monotonic response due to fitting the stabilized uniaxial ratcheting rates.
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