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INFLUENCE OF STEADY FLOW ON THE POSITION OF RESONANT
FREQUENCIES OF HUMAN VOICE

Storkan J.!, Vampola T.2

Abstract: This study aimed to evaluate the influence of steady flow on the position of resonant peaks of human
voice for phonation of vowel [a:] and its use for the energy redistribution in the frequency spectrum during the
singing. The study applied 3D volume models of the vocal tract based on computer tomography (CT) images
of a female speaker converted to the simplified 1D model assembled from the cylindrical elements. The 1D
model considers the acoustic energy dissipation due to friction losses inside the vocal tract and emitting energy
from the mouth. The steady flow higher than 3 I/s shift resonance F3 and F4 to the lower values and increases
positively the amount of acoustic energy in the frequency interval 2.5-4 kHz and can influence support the
stronger voice production.
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1. Introduction

The very detailed three-dimensional finite element models (3D FE) of the human vocal tract (VT) can be
assembled based on computer tomography (CT) images including all the side cavities like the piriform
sinuses, valleculae and by the nasal tract (NT), see e.g. (Vampola et al, 2020; Vampola et al, 2021 and
Vampola et al, 2024). The complexity of these computational models having millions of degrees of freedom
demand using supercomputers or high-performance computational systems. In case of evaluating the
influence of the steady flow, turbulent losses or stiffness of boundary tissues the 3D models are extremely
time consuming. These models cannot be used for easy geometric modification because their conversion to
the fully parametric models is due to their complexity problematic. Therefore, deriving simplified one-
dimensional (1D) computational models involving all significant physical phenomena is still a suitable
approach for sensitivity analysis or optimization calculations of the VT.

2. Vocal tract models

The geometric configuration of 1D models of the VT is based on the CT images of a female subject. The
CT images were transformed into 3D volume models which were subsequently divided into separate
segments. The parallel cavities of the piriform sinuses, valleculae were modeled by means of Helmholtz’
resonators where their definition parameters (volume, area and length of neck) were taken from the 3D
volume models. Figure 1 and Table 1 shows the definition of cross-sections areas of the vowel. Table 2
defines the parameters of Helmholtz’ resonators.
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Fig. 1: 3D and 1D model of vocal tract for vowel [a:]

Tab. 1: Cross sections areas_for vowel of 1D model [a:].

Cross section 1-8 [ecm?]  Cross section 9-16 [cm?]  Cross section 17-24 [cm?]  Cross section 25-31 [cm?]

0.3762 3.091 2.962 8.591
0.9527 2.819 3.649 8.090
0.8577 2.477 4.308 7.287
0.8565 1.734 5.958 6.519
1.080 1.772 6.772 4.808
3.539 2.252 7.202 2.683
4.697 2.400 7.670 0.4807
3.310 2.099 8.242

Tab. 2: Parameters of Helmholtz’ resonators for vowel [a:].

Volume [m?] Area [m?] Length [m]
R 0.9817E-06 0.10475¢-3 0.001
p g 0.9253E-06 0.1144¢-3 0.001
. 0.3695E-06 0.09559¢-3 0.001
vallecuale — left/right 0.5889E-06 0.11882¢-3 0.001

3. Analytical 1D model

The wave equation (Munjal, 2014) for a movable viscous compressible fluid of constant temperature can
be assembled in the form
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Where pr(x,t) = po +p(x,t), pr(x,t) = po + p(x,t) and ur(x,t) = uy + u(x, t). Parameters pgy, po
are constant components of density and pressure corresponding to the atmospheric values at the given
temperature, u, is the steady state flow value and ¢, is speed of sound in the vocal tract. Since sound
pressure p(x,t) and particle velocity u(x, t) have been considered as a function of spatial coordinate and
time, it can be by the method of separation variables split into the two independent functions, where time
function is expressed as a harmonical signal

p(x,t) = P(X)T(t) = P(x)el®, u(x, t) = U(x)T(t) = U(x)e/®t. )

After substitution Eq.(2) into Eq.(1) and using a Mach number M = ?, a real wave number k, = Cﬁ and a
0 0
-

resistance coefficient § = normalized by the basic wave resistance can be found the wave equation for

PoCo
the cylindric element in the form
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Its solution is
p(x; t) = (Clellx + Czellzx )eja)t} (4)
with
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The velocity of the mass particle can be derived from the continuity equation in the form
aPy .
u(x,t) = jwp +1r)! (j Mky P + (M? — 1)5) e/vt, (6)

Mach number expresses the influence of the steady state flow and £ defines the dissipation of the acoustic
energy.
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Fig. 2: Helmholtz’s resonator

The simplified 1D model is assembled from the boundary conditions for pressures and impedances of
individual cylindrical segment. The parallel cavities of the VT in the 1D model were modeled by the
acoustic impedance of Helmholtz’s resonators (Fig. 2)
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where the definition of the acoustic mass m,, resistance 7, and compliance c, is in (Munjal, 2014).

4. Acoustic energy dissipation

The acoustic energy losses, caused by the radiation of the sound from the mouth to the free field, was
modeled by a circular plate oscillating in an infinite wall. The frequency-dependent acoustic impedance
was implemented for this case earlier (Vampola et al, 2024)

5 _ CoPo J1(2kR) _Hl(ZkR)
Za = S kR = kR '

where R is an equivalent radius of the vibrating plate calculated from the cross-section areas A of the VT
model at the lips and Ji and H, are the Bessel and Struve functions. The equation of motion (1) was derived
under the assumption that there is no relative motion of the individual fluid layers in the cross-sections of
the vocal tract. In other words, the acoustic wave remains planar, and the energy dissipation is possible
between the boundary walls of the vocal tract and the layer of fluid wetting these boundaries, then the
acoustic resistance of a cylindrical element of constant cross-section R of a given length / can be expressed
as a real part of the acoustic impedance in the form of the Hagen-Poiseuille’s law valid for the laminar type
of flow (Munjal, 2014).
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