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Abstract: A new industrial building was constructed for processing rough mining material, with sieves used 
for rock sorting. However, these sieves induced intense dynamic effects, resulting in significant vibrations. The 
building’s design did not incorporate dynamic assessments, leading to unbearable vibrations that severely 
restricted its operation. To address this issue, dynamic measurements were conducted to determine the 
building's parameters and its resulting dynamic response. As a solution, a tuned mass damper (TMD) was 
designed for the building's critical parts. The TMD parameters were optimized, and its performance was 
validated through extensive dynamic numerical analyses. Samples of these dampers were fabricated in the 
laboratory and subsequently installed in the building. The effectiveness of the dampers was evaluated through 
both numerical analysis and in-situ tests. These procedures demonstrated that the numerical model, developed 
using the Finite Element Method (FEM), accurately represents the system as a digital twin, including the 
building, dynamic drivers, and tuned mass dampers. 
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1. Numerical model of the industrial building 

For improved control and analysis of the measurement results, a reference FEM model was developed based 
on the provided project documentation. This model primarily consists of a beam structure (Fig. 1), where 
the columns are represented by steel cross-sections of type HEA 160, 220. The floor beams are modeled 
using IPE 220 type cross-sections. The stiffeners are represented as square hollow sections (SHS), with 
dimensions ranging from 160/160 and a wall thickness of 5 mm, to 220/220 with a wall thickness of 8 mm.  

 
a)                                                                        b) 

Fig. 1: A) FEM model of the structure       b) description of critical parts. 

The floor slabs were modeled using planar elements to accurately represent their function as floor 
diaphragms. Their shear stiffness was designed to be equivalent to that of a more complex floor structure, 
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which consists of steel beams and trapezoidal sheets with overcasting. Figure 2 illustrates the significant 
eigenfrequencies and eigenmodes, which describe both global (a) to d) and some local (e) and f) vibrations. 

                     
       a) x-axis 1st  b) y-axis 1st  c) torsion 1st  d) y-axis 2nd    e) container platform  f) critical diagonal 
Fig. 2: Significant eigen frequencies and modes, a) 1,6Hz, b) 2,1Hz, c) 3,9Hz, d) 6,6Hz, e)5.9 Hz f) 13Hz 

2. Test results and FEM model calibration 

The results of the gradually calibrated FEM model for eigenfrequencies and eigenmodes are presented in 
Tab. 1, illustrating the model tuning process. Finally, it was necessary to account for all secondary structural 
components, such as conveyor belts, machines installed on specific platforms, etc. After incorporating these 
elements, the measured and calculated eigenfrequencies and eigenmodes showed a strong correlation. 

Tab. 1: Process of preparing the appropriate digital twin with respect to eigen frequencies matching 

Calibration 
steps  1. Freq 

(Hz) 
2. Freq 

(Hz) 3. Freq (Hz) 5. Freq (Hz) 

 FEM analysis     
1 Without conveyors belt 1,55 2,08 3,90 6,58 
2 With vertical conveyor belt 2,42 2,62 4,43 6,66 
3 With horizontal conveyor belt 1,57 2,23 4,00 6,65 
4 With all secondary structures 2,47 2,76 4,48 6,71 

 TEST results     
 Global frequencies 2,31 2,85 4,11 7,01 

As a result of this calibration, a reliable digital twin of the structure was established. With this model, it 
became relatively straightforward to determine the appropriate values for the damping device (TMD) that 
could effectively reduce the vibrations (Clough and Penzien, 1993). 

3. Tuned mass damper parameters 

An overview of typical damping devices is provided by Sarwar and Sarwar (2019). The numerical scheme 
of the TMD is illustrated in Fig. 3.  

 
Fig. 3: TMD scheme  

The system consists of a mass m2  connected to the main structure by a spring k2 and a damper c. The values 
of these components must be carefully selected to ensure the TMD's efficiency across a wide frequency 
range. The design of the TMD for the container platform (Fig. 1) is further discussed. In this case, the main 
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system is modeled as a Single Degree of Freedom (SDOF) system, with mass 𝑚𝑚1 and stiffness 𝑘𝑘1 
representing the container platform, and experiencing vertical displacement 𝑢𝑢1 due to harmonic excitation 
at resonance F0cos(ωt). The damping of the platform is neglected, meaning 𝑐𝑐1 = 0. The damping constant 
ccc of the TMD must be determined. The added mass 𝑚𝑚2 is connected to the structure through a spring 𝑘𝑘2 
and a damper 𝑐𝑐, with displacement 𝑢𝑢2. By solving the two differential equations governing the system, the 
dynamic response of both the main system and the TMD can be found (Pacht and Flesch, 1993).  

 𝑚𝑚1�̈�𝑢1 + 𝑐𝑐(�̇�𝑢1 − �̇�𝑢2) + 𝑘𝑘1𝑢𝑢1 + 𝑘𝑘2(𝑢𝑢1 − 𝑢𝑢2) = 𝐹𝐹0 𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔 𝑡𝑡 (1) 

 𝑚𝑚2�̈�𝑢2 + 𝑐𝑐(�̇�𝑢2 − �̇�𝑢1) + 𝑘𝑘2(𝑢𝑢2 − 𝑢𝑢1) = 0 (2) 

where a dot above a variable indicates the first derivative with respect to time, and two dots represent the 
second derivative. The following parameters are introduced: 

𝑢𝑢1,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹0
𝑘𝑘1

            static deflection due to the amplitude of exciting force [m] 

𝜔𝜔1 = �𝑘𝑘1
𝑚𝑚1

  natural angular frequency of the main system [rad/s]  

𝜔𝜔𝐸𝐸 = �𝑘𝑘2
𝑚𝑚2

                          natural angular frequency of TMD [rad/s]  

𝜆𝜆 = max|𝑢𝑢2 − 𝑢𝑢1|              maximum relative displacement between the main system and TMD [m] 

 

From the particular solution of the differential equations (1) and (2), the maximum displacement of the 
main system can be expressed. This value must be minimized to optimize the system's performance and 
reduce vibrations effectively. 

 𝑢𝑢   1,𝑚𝑚𝑠𝑠𝑚𝑚
2 = 𝑢𝑢   1,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2 �𝛽𝛽2−𝛼𝛼2�
2

4𝜉𝜉2𝛽𝛽2(𝛽𝛽2−1+𝜇𝜇𝛽𝛽2)2+[𝜇𝜇𝛼𝛼2𝛽𝛽2−(𝛽𝛽2−1)(𝛽𝛽2−𝛼𝛼2)]2 (3) 

where the dimensionless parameters are: 

𝛼𝛼 = 𝜔𝜔𝐸𝐸
𝜔𝜔1

                   angular frequency ratio, 

𝛽𝛽 = 𝜔𝜔 
𝜔𝜔1

                   ratio between the frequency of excitation force and the natural frequency, 

𝜇𝜇 = 𝑚𝑚2
𝑚𝑚1

                   mass ratio between TMD and the main system, 

𝜉𝜉 = 𝑐𝑐
2𝑚𝑚2𝜔𝜔𝐸𝐸

             TMD damping ratio. 

An important aspect of the TMD design involves determining the relative displacement between the main 
system and the sprung damped mass. While precise determination is relatively difficult, this quantity can 
be verified through a dynamic STEP-BY-STEP calculation. Alternatively, an approximation of this quantity 
can be obtained using the following formula: 

 � 𝜆𝜆
𝑢𝑢1,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�
2

= 𝑢𝑢1
𝑢𝑢1,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1
2𝜉𝜉𝜇𝜇𝛽𝛽

  (4) 

4.  Optimal design of tuned mass damper  

Each critical part (Fig. 1) is solved separately. Due to space limitations, only the result for part C) – the 
container platform – is presented here. The design values of the TMD constructed under the container 
platform are summarized in Fig. 4a). The efficiency of this TMD is expressed as the relationship between 
the ratio of the maximum dynamic displacement to the static displacement 𝑎𝑎𝑎𝑎𝑐𝑐(𝑢𝑢1,𝑚𝑚𝑠𝑠𝑚𝑚/𝑢𝑢1,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and the 
parameter 𝛽𝛽, which represents the dimensionless frequency of the applied load. This is depicted in Fig. 4b). 

The test results for the maximum accelerations before the application of the TMD are shown in Fig. 5. It is 
expected that, with the TMD, the maximum acceleration can be reduced by a factor of approximately 0.4. 
The numerical results, which align closely with the test data, were also calculated. However, due to space 
constraints, these results are not presented in detail here. 
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a)                                                                   b) 

Fig. 4: TMD under container platform, a) design values, b) efficiency with respect of load frequency. 

 

a)                                                                           b) 
Fig. 5: Test values of vertical vibrations on container platform                        

a) Acceleration versus time b) Acceleration amplitude spectra (FFT) 

5. Conclusions  

The first part of the paper focuses on the process of creating a digital twin of an industrial building. In-situ 
tests were conducted to determine the dynamic characteristics of the building, which were then compared 
with numerical analyses performed using the FEM method. Calibration was necessary to obtain accurate 
values for frequencies and eigenmodes in the analysis. Non-structural components had to be considered, as 
omitting them resulted in insufficiently precise results. Additionally, the process of designing an optimized 
TMD for the container platform was discussed. Three crucial damper parameters were determined: 
stiffness, damping, and the relative displacement between the main system and the TMD. 
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MAIN SYSTEM frequency TMD   DESIGN VALUES
SDOF Container platform ONE SPRING

k2,1=k2/4= 27025 N/m
m1 k1 ω1 T1 f1 x c1=c/4= 89 N/(m/s)
kg N/m rad/s s Hz α= 0,99010

7970 11027104 37,20 0,17 5,92 0,02 µ= 0,0100

ξopt= 0,06
MAIN system - max displacement λ= 0,004 m

u1= 0,000723 m 4 springs k2= 108098 N/m
m2= 79,7 kg

MAIN system - max acceleration 4 dampers c= 354 N/(m/s)
amax= 1 m/s2

c1

k2,1 c1

Container Platform

TMD

STRop
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