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DIGITAL TWIN OF INDUSTRIAL BUILDING FOR TUNED MASS
DAMPER APPROPRIATE DESIGN

Sokol M.!, Mazackov4 K.!, Venglar M.!, Crespo-Sanchez S.?

Abstract: A new industrial building was constructed for processing rough mining material, with sieves used
for rock sorting. However, these sieves induced intense dynamic effects, resulting in significant vibrations. The
building’s design did not incorporate dynamic assessments, leading to unbearable vibrations that severely
restricted its operation. To address this issue, dynamic measurements were conducted to determine the
building's parameters and its resulting dynamic response. As a solution, a tuned mass damper (TMD) was
designed for the building's critical parts. The TMD parameters were optimized, and its performance was
validated through extensive dynamic numerical analyses. Samples of these dampers were fabricated in the
laboratory and subsequently installed in the building. The effectiveness of the dampers was evaluated through
both numerical analysis and in-situ tests. These procedures demonstrated that the numerical model, developed
using the Finite Element Method (FEM), accurately represents the system as a digital twin, including the
building, dynamic drivers, and tuned mass dampers.
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1. Numerical model of the industrial building

For improved control and analysis of the measurement results, a reference FEM model was developed based
on the provided project documentation. This model primarily consists of a beam structure (Fig. 1), where
the columns are represented by steel cross-sections of type HEA 160, 220. The floor beams are modeled
using IPE 220 type cross-sections. The stiffeners are represented as square hollow sections (SHS), with
dimensions ranging from 160/160 and a wall thickness of 5 mm, to 220/220 with a wall thickness of 8 mm.

. Critical diagonal A)
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Fig. 1: A) FEM model of the structure b) description of critical parts.

The floor slabs were modeled using planar elements to accurately represent their function as floor
diaphragms. Their shear stiffness was designed to be equivalent to that of a more complex floor structure,
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which consists of steel beams and trapezoidal sheets with overcasting. Figure 2 illustrates the significant
eigenfrequencies and eigenmodes, which describe both global (a) to d) and some local (e) and f) vibrations.

a) x-axis 1*' b) y-axis 1* ¢)torsion 1% d) y-axis 2" e) container platform f) critical diagonal
Fig. 2: Significant eigen frequencies and modes, a) 1,6Hz, b) 2,1Hz, c) 3,9Hz, d) 6,6Hz, ¢)5.9 Hz f) 13Hz

2. Test results and FEM model calibration

The results of the gradually calibrated FEM model for eigenfrequencies and eigenmodes are presented in
Tab. 1, illustrating the model tuning process. Finally, it was necessary to account for all secondary structural
components, such as conveyor belts, machines installed on specific platforms, etc. After incorporating these
elements, the measured and calculated eigenfrequencies and eigenmodes showed a strong correlation.

Tab. 1: Process of preparing the appropriate digital twin with respect to eigen frequencies matching

Cal;?;;:lon ].(11—213(1 Zi]flgq 3. Freq (Hz) 5. Freq (Hz)

FEM analysis

1 Without conveyors belt 1,55 2,08 3,90 6,58

2 With vertical conveyor belt 2,42 2,62 443 6,66

3 With horizontal conveyor belt 1,57 2,23 4,00 6,65

4 With all secondary structures 2,47 2,76 4,48 6,71
TEST results
Global frequencies 2,31 2,85 4,11 7,01

As a result of this calibration, a reliable digital twin of the structure was established. With this model, it
became relatively straightforward to determine the appropriate values for the damping device (TMD) that
could effectively reduce the vibrations (Clough and Penzien, 1993).

3. Tuned mass damper parameters

An overview of typical damping devices is provided by Sarwar and Sarwar (2019). The numerical scheme
of the TMD is illustrated in Fig. 3.

o cos(ar)

Fig. 3: TMD scheme

The system consists of a mass m, connected to the main structure by a spring &, and a damper c. The values
of these components must be carefully selected to ensure the TMD's efficiency across a wide frequency
range. The design of the TMD for the container platform (Fig. 1) is further discussed. In this case, the main



Sokol M., Mazackova K., Venglar M., Crespo-Sanchez S. 195

system is modeled as a Single Degree of Freedom (SDOF) system, with mass m; and stiffness k
representing the container platform, and experiencing vertical displacement u; due to harmonic excitation
at resonance Fycos(wt). The damping of the platform is neglected, meaning ¢; = 0. The damping constant
ccc of the TMD must be determined. The added mass m,, is connected to the structure through a spring k,
and a damper c, with displacement u,. By solving the two differential equations governing the system, the
dynamic response of both the main system and the TMD can be found (Pacht and Flesch, 1993).

mlill + C(lll - uz) + k1u1 + kz(ul - uZ) = FO coswt (1)
myily + c(Uz —0y) +ka(up —ug) =0 (2)

where a dot above a variable indicates the first derivative with respect to time, and two dots represent the
second derivative. The following parameters are introduced:

Uistat = 3, static deflection due to the amplitude of exciting force [m]
k .
Wy = m_11 natural angular frequency of the main system [rad/s]
k
wg = m—zz natural angular frequency of TMD [rad/s]
A = max|u, — uy| maximum relative displacement between the main system and TMD [m]

From the particular solution of the differential equations (1) and (2), the maximum displacement of the
main system can be expressed. This value must be minimized to optimize the system's performance and
reduce vibrations effectively.

u2 = 2 (ﬁz_az)z (3)
1,max 1,stat 482B2(B2—1+uB?)2+[pa?B2—(B2-1)(B2-a?)]?
where the dimensionless parameters are:
a= % angular frequency ratio,
1
= wi ratio between the frequency of excitation force and the natural frequency,
1
U= % mass ratio between TMD and the main system,
1
c . .
&= P TMD damping ratio.

An important aspect of the TMD design involves determining the relative displacement between the main
system and the sprung damped mass. While precise determination is relatively difficult, this quantity can
be verified through a dynamic STEP-BY-STEP calculation. Alternatively, an approximation of this quantity
can be obtained using the following formula:

(1)2_ w1 @

U1,stat Uy stat 2§18

4. Optimal design of tuned mass damper

Each critical part (Fig. 1) is solved separately. Due to space limitations, only the result for part C) — the
container platform — is presented here. The design values of the TMD constructed under the container
platform are summarized in Fig. 4a). The efficiency of this TMD is expressed as the relationship between
the ratio of the maximum dynamic displacement to the static displacement abs (U1 max/u 1'Smt) and the

parameter 3, which represents the dimensionless frequency of the applied load. This is depicted in Fig. 4b).

The test results for the maximum accelerations before the application of the TMD are shown in Fig. 5. It is
expected that, with the TMD, the maximum acceleration can be reduced by a factor of approximately 0.4.
The numerical results, which align closely with the test data, were also calculated. However, due to space
constraints, these results are not presented in detail here.






