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Abstract: Operational load monitoring is essential for structural health assessment and possible fatigue 
failure prediction. In such processes strain sensors are usually used to capture localized deformations for 
precise load estimation. But, the monitoring accuracy depends on placement and orientation of the sensor. 
This study employed a numerical method to optimize strain sensor placement in 2D structures. The goal is to 
determine sensor location and orientation in order to capture maximal values of strain in the structure. 
Objective function was definied and genetic algorithm was implemented to find the global extremum of the 
function. The developed methodology and algorithms were tested with two structural examples of irregular 
geometry. In both cases the optimization algorithm converged to optimal sensor position. The results proved 
that the method can be used to improve measurement accuracy and cost efficiency for operational load 
monitoring processes. 
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1. Introduction 

Operational load monitoring is an essential part of structural health assessment that can be used to evaluate 
stress distributions and safety in real time and to predict potential fatigue failure (Mucha et al., 2020). Such 
processes are sensor-based and very often strain sensors provide localized deformation data, which 
facilitates estimation of external loads and internal stresses (Lu et al., 2018). But, the effectiveness of strain-
based monitoring is highly dependent on sensor placement (Li et al., 2022). Therefore, sensor placement 
optimization is very important to enhance the strain measurement sensitivity (Di Nuzzo et al., 2021). 

This study focused on optimizing strain sensor placement in 2D structures to maximize measured values. 
It is assumed that in the load monitoring processes, the relation between load value and measured strain in 
known and, in case of linear-elastic materials, proportional. Therefore, maximization of measured values 
increases accuracy of measurements, and could allow the use of lower-resolution hardware without 
sacrificing reliability. In this study, a numerical approach was used which integrated a genetic algorithm 
(GA) for optimization with finite element method (FEM) for structural analysis. GA is a bio-inspired 
algorithm that is well-suited to solve structural optimization problems due to its ability to efficiently explore 
large design spaces and converge toward global extremum in cases where the objective function values are 
calculated from results of a finite element model (Burczyński et al., 2020). 

2. Optimization problem 

Let us consider a 2D structure Ω of boundary Γ, placed in x-y global coordinate system, presented in Fig. 1. 
The structure boundary is partially supported by known displacements u0 and loaded by forces f0. The load 
value is monitored with a strain sensor S of dimensions b x h placed with its middle point PS in coordinates 
(xs, ys). The sensor edges are parallel to a local coordinate system ξ-η which is inclined to the global x-y 
axes at the angle of φs. The relation between load f0 and strain measurement εs is known and proportional 
in case of linear-static material. 
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Because the sensor dimensions b and h are relatively small compared to the dimensions of the structure Ω, 
εs can be approximated as the average of strain measurements at points P1 and P2: 

 𝜀𝜀𝑠𝑠 ≈ 0.5�𝜀𝜀𝑠𝑠
𝑃𝑃1 + 𝜀𝜀𝑠𝑠

𝑃𝑃2�. (1) 

The measured strain value at point Pi can be expressed as 

 𝜀𝜀𝑠𝑠
𝑃𝑃𝑖𝑖 = 𝜀𝜀𝜉𝜉

𝑃𝑃𝑖𝑖 + 𝛼𝛼𝜀𝜀𝜂𝜂
𝑃𝑃𝑖𝑖 (2) 

where 𝜀𝜀𝜉𝜉
𝑃𝑃𝑃𝑃 and 𝜀𝜀𝜂𝜂𝑃𝑃𝑃𝑃 represent parallel and perpendicular strain components to the sensor orientation 

at point Pi and α is a sensitivity coefficient. 
Strain components in the local coordinate system ξ-η can be calculated by rotating the strain tensor 
expressed in global coordinates x-y by the angle of φs: 

 �
𝜀𝜀𝜉𝜉 𝜀𝜀𝜉𝜉𝜂𝜂
𝜀𝜀𝜉𝜉𝜂𝜂 𝜀𝜀𝜂𝜂 � = � cos𝜑𝜑𝑠𝑠 sin𝜑𝜑𝑠𝑠

−sin𝜑𝜑𝑠𝑠 cos𝜑𝜑𝑠𝑠
� �
𝜀𝜀𝑥𝑥 𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝑥𝑥𝑥𝑥 𝜀𝜀𝑥𝑥 � �

cos𝜑𝜑𝑠𝑠 −sin𝜑𝜑𝑠𝑠
sin𝜑𝜑𝑠𝑠 cos𝜑𝜑𝑠𝑠

�. (3) 

 

 

 
Fig. 1: Sensor placement problem. 

The considered problem is to find the optimal values of sensor coordinates and orientation (xs, ys, φs) for 
which the strain measurement value εmeas is maximal. Therefore, the optimization problem can be expressed 
as maximization of the objective function: max(f), where f is expressed as follows: 

 𝑓𝑓(𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠,𝜑𝜑𝑠𝑠) = �
0 , if sensor partially/entirely outside of 𝚪𝚪

abs(𝜀𝜀𝑠𝑠) , if sensor inside of 𝚪𝚪 . (4) 

Design variables xs and ys are limited to the minimal and maximal coordinates values of the structure Ω. 
Third design variable φs is limited to the range [0, 180°]. 

3. Numerical examples 

Two structures with irregular boundaries, in plane stress, presented in Fig. 2, are considered as numerical 
examples. The material for both cases is structural steel (with Young’s modulus of 205 GPa and Poisson’s 
ratio of 0.3).  Finite element models of the structures were created in ANSYS Workbench software. 
Structure 1 is a plate of overall dimensions of 30 x 90 x 3 mm. It is fixed on the bottom edge and in tension 
by the load applied uniformly on the top edge. Structure 2 is a bell crank of overall dimensions of 300 x 
300 x 5 mm. Load and supports of the structure 2 in the finite element model were applied to the holes 
edges using MPC constraints. Structure 2 is simply supported (allowing rotation) in its bottom left hole and 
loaded in its bottom right hole by a vertical force. The translation of vertical load to horizontal load is 
simulated using a spring mounted to the top hole, as presented in the figure. Topology optimization of 
structure 2 (excluding holes edges) was performed with the objective of compliance minimization and 
constraint to retain 20% of the initial mass. Based on the topology optimization results, final geometry was 
designed.  

Ω

Γ
f0

u0

P1

x

y

xs

Ps

ys
φs

134 Engineering Mechanics 2025, Medlov, Czech Republic, May 12 –14, 2025



 

 3 

a) b) c) d) 

    
Fig. 2: Geometry and boundary conditions: a) geometry and boundary conditions of structure 1 (scale in 

mm), b) initial geometry and boundary conditions of structure 2 (scale in mm), c) results of 
topology optimization of structure 2, d) final geometry of structure 2. 

3.1. Optimization parameters 

It was assumed that the dimensions of the sensor were b = 5 mm, h = 2 mm, and the sensitivity coefficient 
was α = 0.1. Additional constraint was assumed – that the sensor should not be placed closer than 2 mm 
from the boundary Γ. 

To solve the optimization problem, genetic algorithm implemented in the Global Optimization Toolbox of 
the MATLAB software was utilized. Nodal strain data from ANSYS software was imported. Strain results, 
for example load value of F = 100 N for both structures, are shown in Fig. 3. 

The population size was set to 200. Because the boundaries of the example structures (especially structure 
2) are highly irregular, a custom function for generating the initial population was implemented to improve 
convergence process. All the individuals of the initial population were chosen randomly with uniform 
probability with the rule that for every individual the sensor must entirely fit within the structural boundaries 
(have nonzero objective function value). Other parameters of the genetic algorithm were left as default. 

Normal – x direction Normal – y direction Shear 

   

   
Fig. 3: Strain distribution maps, in mm/mm. 

3.2. Optimization results 

For both cases the genetic algorithm stopped because of low average change in the objective function value, 
for structure 1 after 262 generations with the best objective function value of 17.85 µm/m, and for structure 
2 after 107 generations with the result of -14.39. Convergence plots are presented in Fig. 4.  The optimal 
solution for structure 1 was: xs = 10.80 mm, ys = 49.54 mm, φs = 110.01°.  The optimal solution for structure 
2 was: xs = 203.95 mm, ys = 190.23 mm, φs = 133.44°. Optimal sensor placements are presented in Fig. 5. 
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a) b) 

  
Fig. 4: Plot of objective function value over generations: a) for structure 1, b) for structure 2 

a) b) c) d) 

    
Fig. 5: Visualization of optimal solution: a) for structure 1, b) for structure 1 – closeup,  

c) for structure 2, d) for structure 2 – closeup 

4. Conclusions 

This study presented numerical optimization procedure for strain sensor placement in 2D structures. For 
several runs of the genetic algorithm (for both considered cases) every time similar results were obtained. 
This means that in both examples the genetic algorithm converged to optimal sensor position. In the testing 
phase, such convergence was achieved by setting relatively high population size and implementing custom 
function for generating the initial population. The results proved that the presented method can be used to 
improve measurement accuracy and cost efficiency for operational load monitoring processes as higher 
measurement values may allow the use of lower-resolution data acqusition system than for non-optimal 
sensor position. The presented method takes into account the sensor sensitivity to perpendicular stress 
therefore, the optimal sensor position may be different than the coordinates and direction of maximal strain 
in the considered structure. 
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