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Abstract: Free axisymmetric vibration analysis of a porous annular plate is presented in this paper. Both  
the edges of the plate are elastically restrained against rotation and translation. The classical plate theory is 
used to develop the mathematical model. The mechanical properties are varying in thickness direction.  
The Haar wavelets are used in the analysis. The highest order derivative is approximated by Haar wavelets 
and a generalized eigenvalue problem is obtained. The first three frequencies for different combinations of 
restraint parameters, radii ratio and porosity coefficient are obtained. The present analysis is validated by  
a convergence study. The frequencies for classical boundary conditions are obtained by assuming particular 
values of restraint parameters and compared with those available in the literature. A close agreement of results 
is observed. 
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1. Introduction 

Free vibration of structures has been a topic of research for a long time. Porous plates, being lightweight, 
find applications in many fields. There is a need of research on dynamic behavior of structures made  
of porous material. This paper considers free axisymmetric vibration of porous annular plate elastically 
restrained along the inner and outer boundaries. The mechanical properties of the plate material are assumed 
to be varying along thickness direction. The Haar wavelets are used to calculate first three frequencies.  
The effects of porosity and restraint coefficients are studied on the frequencies. The results in special cases 
are compared with those available. 

2. Mathematical model 

Consider a porous annular plate of uniform thickness ℎ with inner radius 𝑏  and outer radius 𝑎  (Fig. 1).  
The top and bottom surfaces are 𝑧 = ℎ/2  and 𝑧 = −ℎ/2, respectively. The material properties are assumed 
to be graded in the thickness direction. 
 
 
 
 
 
 
 

(a) (b) 
 
 
 
 
 

Fig. 1 a) Geometry of the porous annular plate, b) annular plate with constraints at the edges. 
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The equation of motion governing axisymmetric vibration of such plate is given as follows (Shariyat  
and Alipour, 2011): 
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(1)

where 𝑤 is the transverse displacement, 𝐷 = 𝐸ℎଷ/12(1 − 𝜐ଶ) is the flexural rigidity, 𝜐 is the Poisson ratio 
and 𝜌 is the mass density. For free vibrations, solution of Eq. (1) may be taken as: 

𝑤(𝑟, 𝑡) = 𝑊ഥ (𝑟) 𝑒௜ఠ௧. (2) 
Using Eqs. (2) and (1) becomes: 

𝐷
𝑑ସ𝑊ഥ

𝑑𝑟ସ
+ ൜

2𝐷

𝑟
+ 2

𝑑𝐷

𝑑𝑟
ൠ

𝑑ଷ𝑊ഥ

𝑑𝑟ଷ
+ ቊ

(2 + 𝜐)

𝑟

𝑑𝐷

𝑑𝑟
+

𝑑ଶ𝐷

𝑑𝑟ଶ
−

𝐷

𝑟ଶ
ቋ

𝑑ଶ𝑊ഥ

𝑑𝑟ଶ
 

+ ቄ
஽

௥య − ቀ
ଵ

௥మ

ௗ஽

ௗ௥
−

జ

௥

ௗమ஽

ௗ௥మ ቁቅ
ௗௐഥ

ௗ௥
−  𝜌ℎ𝜔ଶ𝑊ഥ = 0. 

(3) 

The variation of Young’s modulus and mass density per unit volume in the thickness plane is taken as 
follows: 

𝐸(𝑧) = 𝐸௠௔௫  ቂ1 − 𝑒ଵ 𝑐𝑜𝑠 ቄ
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where 𝑒ଵ = 1 −
ா೘೔೙

ா೘ೌೣ
  is the coefficient of plate porosity, defined as void volume to bulk volume ratio, and 

0 < 𝑒ଵ < 1. The 𝐸௠௜௡ ,  𝐸௠௔௫ are the Young’s moduli and 𝜌௠௜௡,  𝜌௠௔௫ are the mass densities at 𝑧 = ℎ/2  and 
𝑧 = −ℎ/2, respectively. The Poisson’s ratio 𝜐 = 0.3 is considered to be constant throughout the thickness.  

Using the non-dimensional variables 𝑅 =
௥

௔
, 𝑊 =

ௐഥ

௛
 and Eqs. (4) and (3) becomes: 
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where               𝐴଴ = 𝑓(𝑒ଵ) 𝑅ଷ ,  𝐴ଵ = 2𝑓(𝑒ଵ)𝑅ଶ, 𝐴ଶ = −𝑓(𝑒ଵ)𝑅, 𝐴ଷ = 𝑓(𝑒ଵ), 𝐴ସ = −𝛺ଶ (గିଶ௘భ)
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. 

By letting 𝜖 = 𝑏 𝑎⁄  and using the transformation 𝑆 = (𝑅 − 𝜖)/(1 − 𝜖), the domain [𝜖, 1] gets converted into 
the domain [0, 1] of applicability range of Haar wavelets and Eq. (5) takes the following form: 
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and 𝛺 is the frequency parameter. 

3. Haar wavelets and integrals 

The Haar wavelet transform was proposed by Alfred Haar in 1909. The Haar wavelet is discontinuous  
and resembles a step function (Hein and Feklistova, 2011). The Haar wavelet family on [0, 1] is defined as  

ℎ௜(𝑆) = ൝
1           𝑆 ∈ [𝑆ଵ, 𝑆ଶ) 

−1        𝑆 ∈ [𝑆ଶ,  𝑆ଷ] 
0           𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

  (7) 

where 𝑆ଵ =
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௠
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௠
; 𝑚 = 2௝;  𝑗 = 0, 1, 2, … … , 𝐽 is the scaling factor;  𝑘 = 0, 1, 2, … . . , 𝑚 − 1 is 

the delay factor; 𝑖 = 𝑚 + 𝑘 + 1. Integer 𝐽 is the maximal level of resolution.  

The first four integrals of the wavelets ℎ௜(𝑥) are (Lepik, 2007): 
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The collocation points are defined as 
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2𝑀
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where 𝑀 = 2௃. 

4. Boundary conditions  

Boundary conditions at the edges are given as follows: 
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The Eq. (6) is a fourth order ordinary differential equation with variable coefficients which is solved for 

using Haar wavelets. According to Chen and Hsiao (2007), the highest order derivative 
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displacement 𝑊 is expanded into the Haar series as follows: 
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where 𝑎௜ are unknown wavelet coefficients. 

Integrating (17) four times, it yields that 
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, 𝑊(0) in Eq. (18) are obtained using boundary conditions (13–16). 

5. Results  

Expressing displacement function 𝑊 in terms of Haar wavelets and discretizing Eq. (6) at different grid 
points, we obtain a generalized eigenvalue problem. This eigenvalue problem is solved for first three 
frequencies using a computer program developed in MATLAB. The convergence of frequency parameter 
𝛺 for different values of various parameters (porosity coefficient 𝑒ଵ and restraint parameters 
(𝐾𝑅1,  𝐾𝑅2,  𝐾𝑇1, 𝐾𝑇2) is shown in Tab. 1. Comparison of frequencies of clamped ( C ) and simply supported 
(S) annular plate is shown in Tab. 2. A close agreement of results is observed. 

 J 

Mode  2 3 4 5 6 7 

I 16.001 15.986 15.983 15.982 15.981 15.981 

II 32.311 32.263 32.251 32.248 32.247 32.247 

III 85.802 85.18 85.029 84.991 84.982 84.979 

Tab. 1: Convergence of frequency parameter 𝛺 of elastically restrained porous annular plate  
for first three modes for 𝜖 = 0.3, 𝑒ଵ = 0.1, 𝐾ோଵ = 𝐾ோଶ = 𝐾்ଵ = 𝐾்ଶ = 100. 

     Mode  
Boundary 
condition 

𝑲𝑹𝟏 = 𝑲𝑹𝟐 𝑲𝑻𝟏 = 𝑲𝑻𝟐 Reference I II III 

Clamped-
Clamped 

109 109 Lal and Sharma (2004)  45.3462 125.3621 246.1563 

   Present 45.303 125.950 246.900 
Supported-
Supported 

0 109 Selmane and Lakis (1999) 21.0790 81.7370 182.54 

   Present 21.107 82.064 183.08 

Tab. 2: Comparison of frequency parameter 𝛺 of isotropic annular plate for 𝑒ଵ = 0, 𝜖 = 0.3. 
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