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Abstract: Our paper provides an analysis of the susceptibility of a particular bundled overhead line  
to galloping. It presents a case study of an aerial bundled cable, consisting of four conductors insulated  
by polyethylene, and used for low-voltage power lines. The susceptibility to loss of stability is analyzed  
for cable without and with simulated icing observed on similar real conductors. In the first case, the proneness  
to galloping was excluded based on the results of CFD simulation and the Den Hartog criterion. In latter case, 
the possible occurrence of galloping was confirmed. The critical wind velocity for the ice-covered cable was 
calculated utilizing quasi-steady theory. Finally, the amplitudes of limit cycle oscillation for supercritical wind 
speeds were estimated based on simplified numerical analysis.  
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1. Introduction 

Due to the wind action, electrical overhead conductors often lose their aeroelastic stability in the form  
of galloping. Galloping is a low-frequency self-excited oscillation with amplitudes reaching up to several 
times the sag, most often in a plane perpendicular to the wind direction see Holmes (2018). Galloping 
generally cannot occur at conductors with symmetrical circular cross sections. However, especially in the 
winter ice accretion can significantly change their geometric cross-sections leading to a loss of stability  
and excessive amplitudes of limit cycle oscillation. According to a document by EPRI (2006), the 
occurrence of galloping was most often observed in mode shape with one to three loops. 

In this paper, the specific insulated bundled cable with very low tension force is analyzed in terms  
of proneness to galloping with and without the effect of icing see Fig.1. The properties of this short-span 
low - voltage bundled line consisting of four main conductors are summarized in Tab. 1  

  
 

Fig. 1: Bundled overhead line – axonometric view, cross-section and ice-covered cross-section. 

2. Assessment of proneness to galloping 

The necessary condition for the occurrence of self-excited oscillation – galloping, based on quasi-steady 
theory of a general profile, can be expressed by the Den Hartog criterion: 

𝐶஽(𝛼) +
𝑑𝐶௅

𝑑𝛼
(𝛼) < 0  

(1)

                                                 
* Ing. Stanislav Hračov, PhD.: Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prosecká 

809/76; 190 00, Prague; CZ, hracov@itam.cas.cz 
** Ing. Michael Macháček, PhD.: Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prosecká 

809/76; 190 00, Prague; CZ, machacek@itam.cas.cz 

126



 

 2 

where CD and CL represent the aerodynamic drag and lift coefficients, respectively, and α represents  
the angle of attack, which is defined in Fig. 2.  

Parameter Value 

Horizontal distance of suspension points 21.1 m 

Vertical distance of suspension points 1.55 m 

Diameter of circumscribed circle of bundled line (D) 38 mm 

Cross-sectional are of line 465.28 mm2 

Young's modulus (E) 57 GPa 

Mass per unit length of line (with ice accretion) 1.69 kg/m (2.09 kg/m) 

Horizontal component of tension force for: -5 °C (-5 °C with ice accretion)                   930.3 N (1 149.5 N) 

Tab. 1: Geometrical and mechanical properties of electric line (AES 4 x 120). 

These aerodynamic coefficients of the cable related to various α are depicted in Fig. 2. The left part of this 
figure presents coefficients for the cable without ice accretion, while the right part values for the ice-covered 
line. The data related to the cable itself were determined by CFD simulation in Comsol MultiPhysics, while 
the aerodynamic coefficients for the cable with icing were adopted from Desai et al. (1995). The assessment 
of susceptibility to galloping was evaluated for several angles of attack by means of the Den Hartog 
criterion, which is also graphically represented in Fig. 2 by the black line. The results indicate that the 
conductor without icing is not prone to galloping, as shown in Fig. 2, where the black line is above the zero 
for the entire range of angles α. On the other hand, angular intervals of possible instability can be found  
for the iced-covered cable. The minima of the curve in Fig. 2 representing the Den Hartog criterion 
correspond to the angles of attack, which are related to the lowest critical wind speeds. The angles 
αc = 40.0 °, 179.3 ° and 187.5 ° were determined as critical from the viewpoint of the onset of galloping. 

         

 
Fig. 2: Aerodynamic drag and lift coefficients, CD and CL , and the Den Hartog criterion  

for line without and with ice accretion as the functions of angle of attack α. 

The estimate of critical wind speeds for the onset of self-excited transversal galloping-type oscillations  
of the line with icing having the cross-section related to angles αc can be determined, as outlined  
in Païdoussi et al. (2010): 

𝑉௖(𝛼௖) =  
4 ∙ 𝑚 ∙  ∙ 2𝜋 ∙ 𝑓௡

− ቆ
𝑑𝐶௅
𝑑𝛼

(𝛼௖) + 𝐶஽(𝛼௖)ቇ ∙ 𝜌 ∙ 𝐷

 
(2)

where m is the mass per unit length,   is the structural damping ratio, 𝑓௡ is the natural frequency related  
to the in-plane natural mode i.e. mode in the plane of the static sag, 𝜌 stands for air density and 𝐷 represents 
the diameter of circumscribed circle of the bundled line. The wind direction is assumed horizontal. 
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The lowest critical wind velocity corresponds to the natural frequency of the lowest in-plane natural mode. 
For our bundled overhead line with ice accretion, it is the first asymmetric in-plane mode, which is depicted 
in Fig. 3 and corresponds to a very low frequency fn = 1.105 Hz. This mode and its natural frequency were 
determined according to the solution in Madugula (2001), which is valid for taut cables with sag-to-span 
ration 1:8 or lower. In our case, this ratio is approximately 1:17. It should be noted that due to low tension 
force, the natural frequency of the first symmetric in-plane mode is higher than the above stated lowest  
in-plane natural frequency.  

 
Fig. 3: Sag of the cable w, (blue curve) and the lowest natural in-plane mode (red curve). 

Tab. 2 summarizes the estimated critical wind speeds for this lowest in-plane mode for three critical angles 
αc. The structural damping ratio of the cable was assumed by low value  = 0.5 %. The observed critical 
velocities are very low, so there is a realistic assumption of the occurrence of self-excited oscillation.  

Angle of attack αc = 40.0 ° αc = 179.3 ° αc = 187.5 ° 

Critical wind speed 1.59 m/s 1.85 m/s 1.08 m/s 

 

Tab. 2: Critical wind speeds Vc for galloping of bundled overhead line with ice accretion. 

3. Simplified calculation of limit cycle oscillation  

The simplified calculation of the post-critical steady response is based on the assumptions of the quasi-
steady theory. The harmonic oscillation of the line in the plane of the sag i.e. perpendicular to the direction 
of the wind in the lowest in-plane natural mode 𝑦௡(𝑥) is considered: 

𝑦(𝑥, 𝑡) = 𝐴 ∙ 𝑦௡(𝑥) ∙ sin(2𝜋 ∙ 𝑓௡ ∙ 𝑡) (3)
 

where A is amplitude of the limit cycle, x is longitudinal coordinate of the rope, x (0, L), L is the length 
of the rope and t stands for time. Only in-plane motion of the cable is thus assumed, so the axial and along-
wind motions as well as rotation are neglected. The Max normalization of natural mode 𝑦௡(𝑥) is used  
in Eq. (3). The estimation of the level of steady oscillation of the line at supercritical wind speeds is based 
on the assumption of equality of work, Wd, done by the structural dissipative forces, Fd, and work, Ww, done 
by the aerodynamic forces, Fy, acting on the oscillating line during one natural period Tn:  

𝑊ௗ =  න න 𝐹ௗ

்௡

଴

௅

଴

൫�̇�(𝑥, 𝑡)൯ ∙ 𝑑𝑦(𝑥, 𝑡) ∙ 𝑑𝑥 =  𝑊௪ = න න 𝐹௬൫�̇�(𝑥, 𝑡)൯ ∙ 𝑑𝑦(𝑥, 𝑡) ∙ 𝑑𝑥
்௡

଴

௅

଴

 
(4)

The structural damping force acting on a differential length of the cable 𝑑𝑥 at point x is considered viscous, 
i.e. proportional to the line velocity �̇�(𝑥, 𝑡): 

𝐹ௗ൫�̇�(𝑥, 𝑡)൯ ∙ 𝑑𝑥 =   4 ∙ 𝑓௡ ∙  ∙ 𝑚 ∙ �̇�(𝑥, 𝑡) ∙ 𝑑𝑥 (5)

The aerodynamic force acting on a differential length 𝑑𝑥 at point x in the direction perpendicular to the 
wind direction can be expressed as 

𝐹௬൫�̇�(𝑥, 𝑡)൯ ∙ 𝑑𝑥 =  0,5 ∙ 𝜌 ∙ 𝑉ଶ ∙ 𝐷

∙ ቀ− sec൫𝛼௥(𝑥, 𝑡)൯ ∙ ൫𝐶௅൫𝛼௖ + 𝛼௥(𝑥, 𝑡)൯ + 𝐶஽൫𝛼௖ + 𝛼௥(𝑥, 𝑡)൯ ∙ tan൫𝛼௥(𝑥, 𝑡)൯൯ቁ ∙ 𝑑𝑥 

(6)

where V represents the supercritical wind speed, which is considered constant along the whole cable and 
𝛼௥(𝑥, 𝑡)  is the angle of attack of the relative wind at point x: 

𝛼௥(𝑥, 𝑡) =  tanିଵ(�̇�(𝑥, 𝑡)/𝑉) (7)
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By substituting the expressions from Eq. (5) and Eq. (6) and differential 𝑑𝑦(𝑥, 𝑡)  

𝑑𝑦(𝑥, 𝑡) = 2𝜋 ∙ 𝑓௡ ∙ 𝐴 ∙ 𝑦௡(𝑥) ∙ cos(2𝜋 ∙ 𝑓௡ ∙ 𝑡) ∙ 𝑑𝑡 (8)

into Eq. (4), the supercritical wind speed V can be numerically evaluated from Eq. (4) for the chosen value 
of the amplitude, A. The oscillation amplitudes, as functions of wind speed for selected critical angles αc of 
the analyzed line from Tab. 2, calculated according to this approach are shown graphically in Fig. 4. 
 

 
Fig. 4: Amplitude of limit cycle oscillation as function of wind speed. 

4. Discussion of the results and conclusions  

The numerical simulations confirmed the predicted critical wind speeds given in Tab. 2. The calculated 
amplitudes of the steady-state response are significant even for low wind speeds. Especially, the predicted 
wind effects for both angles around 180 ° are extreme, and the amplitudes in these cases reach almost half 
of the static sag for wind speed around 6 ms-1. However, considering the very low static forces of this cable, 
it is rather impossible to assume that such amplitudes for higher wind velocities will be reached. During 
these predicted substantial limit-cycle oscillations, the dynamic normal forces in the cable are not negligible 
compared to static tensile force. This fact completely changes the prerequisite of harmonic character of the 
response and mainly the assumption of linearity of the mechanical system. A more sophisticated 3D FEM 
model, respecting the geometrical nonlinearity of the system, must be used to solve the self-excited excited 
vibration of this low-tensioned cable. The outputs from the simplified analysis with a linearized model used 
in this paper can serve only for the estimation of the onset of galloping-type instability.  

The results of this analysis nevertheless served also for controlling, comparative purposes and calibrations 
during the creation of 3D FEM model. This complex model includes geometrical nonlinearity of the 
problem and incorporates bending stiffness, which improves the stability of calculations and the precision 
of results. Detailed information about the model and comparison with the results of this simplified approach 
are presented in another paper of authors; see Macháček and Hračov (2024). 
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