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Abstract: Assessing responses in slender engineering structures facing both deterministic harmonic and
stochastic excitation is often based on an approximation by the single-degree-of-freedom van der Pol-type
nonlinear model. Determining the response probability density function involves solving the Fokker-Planck
equation, which is generally a challenging task. Hence, semi-analytical and numerical methods come into
play. This contribution reviews several possible techniques and spotlights the exponential-polynomial-closure
method. The shown results are limited, as the paper reflects an early stage of the relevant research direction.
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1. Introduction

Slender engineering structures, such as footbridges, masts, and power lines, are prone to excessive vibration.
This tendency is particularly notable in the interplay between natural and excitation frequencies. In the lock-
in region, where the structure’s response stabilizes within a specific frequency range, it exhibits stationarity
characterized by a dominant frequency and several superharmonic frequencies. Beyond this boundary, the
response transforms into a non-stationary quasi-periodic state, with new frequencies emerging in a fan-
shaped plot. Introducing additive random noise further complicates the scenario, the response process is
stochastic. Understanding these dynamics is crucial for the design of slender structures, providing insights
into their complex vibrational patterns and aiding in the development of effective mitigation strategies.

Exploring nonlinear dynamic systems under random excitation has long been an important subject with
applications in various scientific and engineering domains. Researchers have developed analytical, semi-
analytical, and numerical methods to obtain stationary PDFs or statistical moments, particularly focusing
on systems influenced by Gaussian white noise. In contrast to the stationary response case, where usable
solution procedures are often available, the non-stationary response case remains the subject of intensive
research, presenting significant challenges even in scenarios limited to additive excitation.

The physical model utilized in this paper is the SDOF oscillator of the van der Pol type. This model is
commonly used to depict transverse wind-generated vibrations under additive excitation, combining deter-
ministic and random components. The normal form of this model is given as follows:

u̇ = v , v̇ = (η − νu2)v − ω2
0u+Pω2 cosωt+ hξ(t) , (1)

where: u, v are the displacement [m] and velocity [ms−1]; η, ν are the parameters of the linear and quadratic
damping, respectively [s−1, s−1m−2]; ω0, ω are the eigen-frequency of the linear SDOF system and fre-
quency of the vortex shedding [s−1]; f(t) represents external excitation: f(t) = Pω2 cosωt+ hξ(t); Pω2

and ξ(t) are the amplitude of the harmonic excitation force [ms−2] and the broadband Gaussian random
process [1 ]; and h is the multiplicative constant [ms−2].
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∗∗ Ing. Jiřı́ Náprstek, DSc.: Institute of Theoretical and Applied Mechanics, Prosecká 76, 190 00 Prague 9,
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Using the Itô stochastic calculus, the response PDF is governed by the FPE:

∂p(x, t)

∂t
= − ∂

∂xj
(κj(x, t) · p(x, t)) +

1

2

∂2

∂xj∂xk
(κjk(x, t) · p(x, t)) . (2)

Parameters κj(x, t) and κjk(x, t) represent the first and second derivative moments, generally referred to
as drift and diffusion coefficients, respectively. In the stationary case, the left-hand side of Eq. (2) vanishes,
resulting in a reduced FPE that is solvable in many particular cases (Lin and Cai, 1988). However, in the
general non-stationary case, finding a solution for the complete FPE remains a challenging problem.

2. State of the art

According to Er (1998a), the solution of non-linear second order systems dates back to Kramers (1940),
who presented solution of an one-dimensional undamped system with a non-linear stifness and an additive
white noise excitation. Actually, the motivation in that paper was the first excursion problem in the theory of
the velocity of chemical reactions, when the particle is originally caught in a potential hole but may escape
in the course of time by passing over a potential barrier. If the function representing the potential barrier is
smooth a reliable solution for any value of the viscosity is obtained.

The method of equivalent linearisation (Caughey, 1959), is the simplest solution method for non-linear
systems with random excitation. Its approach can be regarded as the first approximation. In this reference
the author studies the response of a nonlinear string to random excitation. It is shown that if the loading
force is represented by truncated Gaussian white noise with uncorrelated Fourier coefficients, the mean
squared deflection at every point is smaller than that for the equivalent linear string. The paper illustrates
modification of the linearisation method, which is used for deterministic differential equations, for the
stochastic case. The method of equivalent linearisation has been popular for over 65 years. However, there
have been some missteps in its history, including an early conjecture by one of the pioneers that proved
to be false, and an alternative to the standard procedure that went unrecognised for 27 years. Numerous
reviews on method variants and applications are available; e.g. refer to the text by Elishakoff and Crandall
(2016) and the papers cited therein.

Wen (1975) presents an approximate method for nonstationary solution of systems under random excita-
tion, where the studied systems are supposed to include polynomial restoring force and the (filtered) shot
noise type excitation. Using the Galerkin approach based on a time-dependent Hermite-series expansion,
the Fokker-Planck equation (FPE) is is reduced to a system of first-order ordinary differential equations.
Alternatively, when the excitation is non-white or when the FPE is difficult to solve, the perturbation
method (Crandall, 1963) or statistical linearisation techniques (Caughey, 1959, 1963) are recommended,
as reviewed also by Iwan and Yang (1972). Analogous procedure was used by the authors, (Náprstek and
Fischer, 2024), and is illustrated by the numerical example in Chapt. 3.

Iyengar and Dash (1978) propose a technique which is capable to adopt the non-Gaussian excitation. Their
approach belongs to the class of closure techniques. The individual methods in this class differ by different
assumptions made about the statistical structure of the response. Even in cases where the response may be
non-Gaussian, it would be possible to find a function of the response which can be approximated in terms of
the Gaussian distribution via error minimization. The method due to Iyengar and Dash (1978), the Gaussian
closure technique, automatically leads to an associated linear system driven by a Gaussian input. This, in
fact, implies similarity of the method with the statistical linearisation techniques.

When the system is highly non-linear, or when multiplicative random excitations are present, i.e., when the
probability distribution of the system response is far from being Gaussian, more response moments than
two has to be approximated. This generalization leads to non-Gaussian closure methods as that used by
Assaf and Zirkle (1976). In this highly instructive paper authors approximate the PDF of the response via
the Edgeworth-type expansion. It is a rearrangement of the Gram-Charlier expansion so that the accuracy
increases with the natural order of the terms (Cramér, 1946). The PDF is assumed in the form

p(x) = p0(x)
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where p0(x) is the Gaussian PDF and mx, σx are the mean value and the standard deviation of x, H(·)
are the Chebychev-Hermite polynomials, and λi the ith-order semi-invariants. The authors claim that four
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terms in the expansion are usually sufficient. On the other hand, the obtained series can lead to negative
probabilities as pointed out by Grigoriu (1991).

Cai and Lin (1988) and Cai et al. (1992) have developed a new approximation procedure in which a given
non-linear system is replaced by another non-linear system belonging to the class of generalized stationary
potential (Lin and Cai, 1988) for which the exact stationary solutions are obtainable. The replacement is
based on the premise of preservation of the average energy dissipation in the replacing and the original
systems.

For weakly non-linear systems with weak excitations, the stochastic average method, (Roberts and Spanos,
1986), represents a powerful alternative. The perturbation method, due to Crandall (1963), belongs to
this category as well. For systems with random additive excitation, moment equations derived from the
Itô’s derivative rule can be used to compute the statistical moments instead of the FPE. Introduction of
the central-moment closure or cumulant-neglect closure to the moment equations creates the hierarchy of
equations limited to a desired level, (Wu and Lin, 1984).

The exponential-polynomial-closure (EPC) method was initially published by Er (1998b). In the original
stationary setting, it assumes the sought PDF of an approximate solution in the form of an exponential
polynomial:

p(x;a) = C exp (Qn(x;a)) (4)

Here, x is the state vector, a is the unknown parameter vector, and Qn(x;a) is a polynomial function. The
algebraic system for the unknown parameters a results from the Galerkin approximation with respect to
basis functions hk(x) = xk1

1 . . . x
knx
nx fN (x), where k = k1 + . . . + xnx

and fN is the PDF solution using
Gaussian closure.

Since then, variants of the EPC method have been proposed for different settings of the stationary PDF
solutions of nonlinear stochastic oscillators. Modifications for the non-linear, non-stationary case have only
recently emerged, implicitly allowing for non-Gaussian excitation (Guo et al., 2020). A further modification
by Wang et al. (2023) claims superior performance with respect to smaller errors at the PDF tails compared
to the results of Monte-Carlo simulations.

3. Numerical example
The response of the van der Pol oscillator in Eq. (1) is stationary in the lock-in region, which corresponds to
interval ω ∈ (0.85, 1.35) with respect to natural frequency ω0 = 1, parameters η = 1/2, ν = 1/4, P = 1,
and the stochastic parameters h = 1, S = 1. In order to use the stochastic averaging method, (Náprstek and
Fischer, 2024), the response variables are expressed in the trigonometric form as follows

u(t) = ac cosωt+ as sinωt , v(t) = −acω sinωt+ asω cosωt , ȧc cosωt+ ȧs sinωt = 0 .

New parameters ac, as are random variables representing the partial amplitudes of the response. In the
stationary case, they are described by the reduced FPE. It is solvable analytically for zero detuning (∆ = 0)
between excitation and natural frequency. For 0 < ∆, the solution was sought using the Galerkin approach
(Náprstek and Fischer, 2024). The result is illustrated in Fig. 1. PDFs with respect to partial amplitudes
ac, as is shown for M = 2 and a non-negligible value of detuning δ = 0.10. The contour plot of the
estimated cross-PDF p(ac, as) is shown on the left. The middle plot depicts the sections of the PDF for
fixed values ac = {−3/2.0, 3/2} and the right-hand plot illustrates the sections for the selected values
as = {2, 3, 4}. The sections and the corresponding colors are indicated as horizontal/vertical lines in the
left-hand plots. The dashed curves show the basic analytical solution which is valid for the case zero no

Fig. 1: The Galerkin approximation of the stationary cross-PDF for M = 2 (number of stochastic moments)
and detuning value ∆ = 0.10.
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detuning is assumed. The estimates including the M = 2 Galerkin approximations are shown in solid.
It can be confirmed than corrections for M > 2 do not bring visible improvement.

4. Concluding remarks
The study of nonlinear dynamic systems under random excitations is an attractive and widely applicable
topic in various scientific and engineering domains. Nonlinearity in the mathematical model can result in
a non-zero mean of the response, even when the excitation mean is zero. As the PDFs obtained by different
methods are only approximative, their behaviours at the tail positions poses a challenging problem. This
contribution, based on a just started research, presented a historical and state-of-the-art review of available
methods and some preliminary results regarding the stationary nonlinear state based on the stochastic av-
eraging and subsequent Galerkin approach. However, the final target is the fully non-linear non-stationary
case, which is still subject of an ongoing area of research.
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