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PROBABILITY LIMITS OF THE CRITICAL ROTOR SPEEDS 
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Abstract: Rotors are manufactured with certain tolerances, implying that both outer and inner diameters  
of the rotor can be treated as random parameters (RP). This paper focuses on an approach for estimating  
the mean and variance of the critical speeds of rotors. These values allow for probabilistic determination  
of the upper and lower limits of critical speeds. The mean of critical speeds has to be derived iteratively due 
to the frequency (revolution) dependence of gyroscopic and circulation matrices. Subsequently, the critical 
speed is approximated using two terms of Taylor’s expansion at the mean value of critical speed. It is essential 
to conduct sensitivity analysis of the critical speed concerning RP. This approximate approach avoids  
the necessity of knowing the probability function of randomly valued diameters, respecting the validity  
of Chebyshev’s inequality. Rotor discretization in this study is achieved using the Finite Element Method.  
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1. Introduction 

The discretized mathematical model of the rotating rotor without external excitation can be represented by 
well known equation of motion (system of the n differential equations of the 2nd order) (e.g. Dimarogonas, 
(1996)) 

           .ct t t     Mq B G q K K q 0   (1) 

where M, B, G, K, Kc is matrix of mass, damping, gyroscopic effect, stiffness and circulation, respectively, 
all of order n. The quantity q(t) corresponds to vector of generalized displacements and its differentiations 
are marked by dots. Adding the trivial identity 

     ,t t Mq Mq 0   (2) 

to (1) we can come after simple rearrangements to the equation (system of the 2n differential equations  
of the 1st order) 

       ,t tu A u  (3) 

where 
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. (4) 

The Eq. (3) leads to the eigenvalue problem 

   ,    A I v 0   (5) 

which can be solved for ith critical speed in the iteration way respecting some starting chosen initial value 
by iteration way 
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 . (6) 

Each critical speed can be alternatively assessed by Campbell’s diagram, too.  

2. Probability approach 

Let us assemble the independent input random parameters (RP) to the vector of RP and apply  
the expectation operator. We can come to the mean vector of RP 

    ,1
1 2, , ... , .

T s
sE p p p pμ R  (7) 

Let us introduce the critical eigenvalue vector in form 

   ,1
1 2, , , ,

T b
crit b   λ C  (8) 

real part of which corresponds to the vector of critical angular speeds. There is a well-known method  
to calculate derivatives of one eigenvalue e.g. ,j crit i   with respect to some parameter e.g. pk. Let us 

derivate the equation 

  ,crit j j j    A I v 0   (9) 

with respect to parameter pk and pre-multiply by *T
jv . Now we can write 
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Let us assemble the elements (10) into the sensitivity matrix 

 
,
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p
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The relation between derivatives  j

kp




 and Dj

kp




 can be obtained by ( , ,Dj crit j crit j   ) 
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and then the derivatives of the jth critical angular speed with respect to kth RP has form 
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The eigenfrequencies of un-damped system and damping ratios can be obtained according to following 
relations ( j  corresponds to the j-th eigenfrequency of un-damped system) 
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These quantities are depicted in Fig. 1 

   

 Fig. 1 Complex eigenvalues. 

Let us introduce diagonal complex matrix 
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D
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          

D  enabling rewrite the Eq. (13) 

into the compact form 

 .critD 


 
λΩ

D
p p

 (14) 

Let us express the vector of critical angular speeds by means of the first two terms of Taylor’s series about 
mean vector of RP (Dupal, 2008). We can come to brief form (only the 1st derivatives) 

        .D D
D D D



 
     

 
p

p p p p

p μ

Ω Ω
Ω Ω μ p μ Ω μ p μ

p p
  (15) 

The terms containing the 2nd derivatives and higher were left out respecting linear transformation relation 

between diameters of shafts and their eigenvalues. Applying expectation operator  DE Ω  to the Eq. (15) 

we obtain approximate relation for mean value of vector of critical angular speeds in form 

  
D DΩ pμ Ω μ . (16) 

Applying variance operator     D D

T

D DE  Ω ΩΩ μ Ω μ  to the Eq. (15) respecting (16) we can come 

to the covariation matrix of critical speed vector in form 

        .
D

T T T
T T

D D D D D DE E
      

             
Ω p p p p p

Ω Ω Ω Ω Ω Ω
Σ p μ p μ p μ p μ Σ

p p p p p p
 (17) 

The last relation can be rearranged by means of (14) into form 

 ,
D

T
crit crit 


 Ω p

λ λ
Σ D Σ D

p p
 (18) 

where pΣ  is covariation matrix of input RP (when parameters are independent this matrix is diagonal). 
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3. Application 

Random parameters: 1 2,D D  from the left hand side, probability density function-normal (Gauss), 

variances 2 1 7 , 1, 2.
iD e m i      2 .

iDdiag pΣ  Mean values 
1 2

0.012 , 0.016D Dm m   . 

Results:    
1 2

2 22 2 0.8149 / ,  0.8332 /
D D

rad s rad s    .  

Monte Carlo    
1 2

2 22 2 0.8149 / ,  0.8390 /
D D

rad s rad s      

 3 3 0.9973
Di Di Di DiDiP              (Gauss), Monte Carlo simulation relative frequency  

of the inequality satisfaction is 0.9972. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Spindle of the textile machine. 

4. Conclusions  

Numerous numerical experiments were conducted, involving various values of random parameters 
governed by different probability density functions. Selected combinations will be demonstrated during  
the presentation. In line with the Central Limit Theorem, the results tend to converge towards the normal 
probability function as the number of RPs increases. The presented approach could be enhanced  
by incorporating more terms from Taylor’s series into the eigenvalue expression. Based on the results  
of Monte Carlo simulations, the accuracy of the presented approach seems to be satisfactory.  
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