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WEAK IMPOSITION OF POTENTIAL DIRICHLET BOUNDARY
CONDITIONS IN PIEZOELASTICITY: NUMERICAL STUDY
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Abstract: Detailed modelling of piezoelastic structures often includes also an external circuit. This is tied with
the need for a weak imposition of electric potential Dirichlet boundary conditions and questions of simulation
accuracy arise. Several methods allowing the weak imposition, namely the non-symmetric Nitsche’s method,
penalty method and their combinations, are evaluated and their numerical convergence w.r.t. uniform mesh
refinement for various finite element approximation orders is reported. The numerical study is performed on
a geometry corresponding to a piezoelectric sensor.
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1. Introduction

When performing and simulating experiments involving electro-active materials (piezoelectric, flexoelec-
tric, etc.), such as reported in (Cimrman et al., 2023), the electric potential that arises on conductive elec-
trodes is a key quantity to be measured and modeled. The presence of an external circuit (e.g. an oscillo-
scope) makes the constant potential on an electrode an additional unknown to be computed. As such, the
usual potential Dirichlet boundary condition can be enforced only in a weak sense, because its value is not
known.

The non-symmetric Nitsche’s method without penalty term (Burman, 2012) seemed like a good candidate
to be used in combination with the finite element method (FEM), but its slow convergence in our context of
3D piezoelasticity, numerically demonstrated below, motivated this ongoing research of simple and accurate
methods for weak application of Dirichlet boundary conditions. We demand a sufficient accuracy even on
relatively coarse meshes, because our main interest lies in dynamical simulations.

2. The Finite Element Model

We consider a piezoelastic disc Ω ⊂ R3 whose FEM discretization is shown in Fig. 1. Under linear assump-
tions, the constitutive relations can be written as

σ = CPε− eTE , d = eε+ κE , ε =
1

2
(∇u+ ∇Tu) , E = −∇p , (1)

where the mechanical stress σ (in Voigt notation vector ordering) and the electric displacement d are pro-
portional to the mechanical strain ε and the electric field vectorE, u is the mechanical displacement vector,
p the electric potential,C the matrix of elastic properties under constant electric field intensity, e the piezo-
electric modulus and κ the permittivity under constant deformation. Denoting by Γb to bottom and Γt the
top sides of the disc, where conductive electrodes are situated, the strong form of the problem is: Find p
such that

−∇ · σ = b in Ω , ∇ · d = 0 in Ω ,

u = 0 on Γb , p = 0 on Γb , p = p̄ on Γt ,
(2)
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where b are the self-weight volume forces and p̄ is a given potential to be enforced weakly. Zero Neumann
boundary conditions are applied on the parts of the Ω boundary not mentioned above.

Let V u
0 (Ω) = {u ∈ [H1(Ω)]3,u = 0 on Γb}, V p

0 = {p ∈ H1(Ω), p = 0 on Γb}. The weak form of (2) is
then: Find p such that

∫

Ω
ε(v)TCε(u)−

∫

Ω
ε(v)TeT∇p−

∫

Ω
v · b = 0 ∀v ∈ V u

0 (Ω) , (3)
∫

Ω
(∇q)Teε(u) +

∫

Ω
(∇q)Tκ∇p−

∫

Γt

(κ∇p) · nq = 0 ∀q ∈ V p
0 (Ω) , (4)

u = 0 , p = 0 on Γb , (5)
p = p̄ on Γt weakly, see below. (6)

Note that the last term in (4) would be zero if the condition p = p̄ on Γt was applied as usual by modifying
the definition of the test function space V p

0 . The above model is discretized using the FEM, leading formally
to the same equations but with functions from appropriate finite element spaces.

3. Weak Imposition of Dirichlet Boundary Conditions

Numerous approaches exist for the weak imposition of Dirichlet boundary conditions, see e.g. (Lu et al.,
2019). Here we consider only the non-symmetric (Freund and Stenberg, 1995) Nitsche’s method (Nitsche,
1971) with or without penalty term (Burman, 2012). This method introduces additional terms to (4):

+

∫

Γt

(κ∇q) · n(p− p̄) +

∫

Γt

βq(p− p̄) , (7)

where β is the penalty parameter. The pure penalty method can be obtained by omitting the first integral.
According to (Babuška, 1973), β = β0h

−(2o+1)/3, see also (Lu et al., 2019), yields, in the case of the
Laplace’s problem, for a fixed β0 the rate of convergence of the order h(2o+1)/3 in the energy norm, where
h is the element size and o the FE approximation order. For this reason results for the following Laplace’s
problem (electrostatics)

∫

Ω
(∇q)Tκ∇p−

∫

Γt

(κ∇p) · nq = 0 ∀q ∈ V p
0 (Ω) , (8)

p = 0 on Γb , (9)
p = p̄ on Γt weakly (10)

are also included in the next section for reference. Again the terms of (7) are added to (8) to enforce (10).

Fig. 1: The FE meshes and probe lines: basic mesh (left), 4× uniformly refined mesh (right).

4. Numerical Convergence Results

The problems specified above were solved for approximation orders o = {1, 2, 3} (u and p were approxi-
mated with the same order) and uniform mesh refinement levels r = {0, 1, 2, 3, 4} with various values of
β. The r = 0 (152 vertices, 382 elements) and r = 4 (280 177 vertices, 1 564 672 elements) meshes can
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be seen in Fig. 1, together with probe lines along which the p = p̄ = 555 V satisfaction was checked.
The geometry corresponds to a piezoelectric sensor PIC 181 from PI company.

The sensor has the following properties:

in Voigt notation: CP =




127.2050 80.2122 84.6702 0.0000 0.0000 0.0000
80.2122 127.2050 84.6702 0.0000 0.0000 0.0000
84.6702 84.6702 117.4360 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 22.9885 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 22.9885 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 23.4742




GPa,

e =




0.00000 0.00000 0.0000 0.0000 17.0345 0.0
0.00000 0.00000 0.0000 17.0345 0.0000 0.0

−6.62281 −6.62281 23.2403 0.0000 0.0000 0.0


 C/m2, κ = ε0




1704.4 0.0 0.0
0.0 1704.4 0.0
0.0 0.0 1433.6


 F/m ,

where ε0 = 8.8541878128 · 10−12 F/m is the vacuum permittivity.

a) Laplace: p distribution b) Piezoelasticity: p distribution (1 000× deformation)

c) Laplace: probe d) Piezoelasticity: probe
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Fig. 2: Nitsche’s method without penalty (β = 0): a) Laplace and b) piezoelasticity distributions of p for o = 1
and r = 4, c) Laplace and d) piezoelasticity probes of p along the lines in Fig. 1.

All results reported here were obtained using the Open Source finite element software SfePy (Cimrman
et al., 2019; Cimrman, 2021). The results for the non-symmetric Nitsche’s method without penalty term
(β = 0), our first choice, are illustrated in Fig. 2. While the results for the Laplace’s problem (Figs. 2 a)
and 2 c) converge relatively well to the prescribed value 555 V, the piezoelasticity problem (Figs. 2 b and 2 d)
have low accuracy even for the finest mesh (r = 4). Therefore the penalty term was added, either with
a constant coefficient β = 1, or scaled by the local element size β = h−(2o+1)/3. Overall convergence
results are summarized in Fig. 3, where the error is defined as ||p(t) − p̄||2/N , N = 980 being the fixed
number of probe points along the probe line parameterized uniformly by t. The blue β = 0 lines correspond
to the Nitsche’s method without the penalty term discussed above. The orange lines show the influence of
adding the penalty term, and finally the green dashed lines result from the pure penalty method with β = 1.
When the h scaling of β is used, precision approaching machine limits seem to be reached, however the β
values are large: the average values ranged from 5 · 102 (o = 1, r = 0) up to 2 · 108 (o = 3, r = 3) —
that is significantly higher than in the constant case and it may spoil convergence of iterative solvers due to
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a bad conditioning of the resulting matrix. The non-scaled β = 1 curves of the pure penalty method and
the Nitsche’s method with the penalty visually coincide, which indicates that the effect of the first integral
of Eq. (7) is negligible in our setting (compare with the relatively lower accuracy of β = 0 lines).
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Fig. 3: The h-convergence of the Laplace’s (left) and piezoelasticity (right) problems.

5. Conclusion

We have numerically evaluated the Nitsche’s and penalty methods for weakly enforcing Dirichlet boundary
conditions in the context of piezoelasticity, with the following outcomes. The non-symmetric Nitsche’s
method without penalty is not accurate enough by itself, only in combination with a penalty. The pure
penalty method exhibits a sufficient accuracy even for coarse and low order approximations, although the
error does not improve with the increasing order or h-refinement. However this does not present a practical
problem in our piezo-elasto-dynamic application, where only second order elements are used to approxi-
mate the potential. The problem of bad conditioning with high values of the penalty β can be mitigated by
using a direct solver. The influence of adding the Nitsche’s method terms to the pure penalty method on the
conditioning will be addressed in future.
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