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CGA-BASED SNAKE ROBOT CONTROL MODEL

Byrtus R.∗

Abstract: The snake robot is a nonholonomic mechanism composed of links equipped with passive wheels, con-
nected by actuated joints whose motion mimics the locomotion of biological snakes. Control models intended
for small-time local controllability are usually obtained by means of differential geometry, or, more recently,
geometric algebra. Geometric algebras, also known as Clifford algebras, are an algebraic structure useful for
modelling geometric objects and their transformations. We present an approach utilising the two-dimensional
Conformal Geometric Algebra in order to derive the differential kinematics of the mechanism. A control model
for small-time local controllability is created based on obtained differential kinematics, which is then used in
visualization.
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1. Introduction

Let R3,1 be a vector space of dimension 4, with the orthogonal basis {e1, e2, e+, e−} and an inner product
such that e21 = e22 = e2+ = 1 and e2− = −1. Define a new orthogonal basis {e1, e2, e0, e∞} with
e∞ = e− − e+ and e0 = 1

2(e− + e+). The 2D Conformal Geometric Algebra (CGA) is the Clifford
algebra G3,1, also denoted as Cl3,1, with the basis {e1, e2, e0, e∞} along with the embedding Q of a point
[x, y] ∈ R2 given by

Q : R2 3 [x, y] 7→ xe1 + ye2 +
1

2
(x2 + y2)e∞ + e0. (1)

Denote the product on G3,1 as ◦ : G3,1 ×G3,1 → G3,1 (later on, we will omit ◦ for brevity). An important
property that defines the structure of the algebra is that for any vector a ∈ R3,1, its geometric product
coincides with its inner product: a ◦ a = a · a. An element of G3,1 is called a multivector. G3,1 along
with multivector addition and scalar multiplication has the structure of a vector space. The operation ◦ is
associative and distributive. It is not the only product we can define in G3,1, in fact, for vectors a, b ∈ R3,1,
it holds that

a ◦ b = a · b+ a ∧ b, (2)

where · is the inner product defined earlier and ∧ is the outer product. The inner and outer products can be
extended to an arbitrary multivector (note that the eq. (2) does not hold in general for any two multivectors).
The linear combination of geometric products of k linearly independent basis vectors is called a k-vector;
for example, e1 ◦ e2 is a 2-vector (also called a bivector).

The advantage of utilising this algebraic structure lies in its connection to geometry, as the name implies.
It can be shown that using the inner and outer products, we are able to express geometric entities from the
embedded space (in this case R2) as the null-spaces of embedded points w.r.t. the respective product used.
For the outer product, we have the so-called Geometric Outer Product Null Space (GOPNS) and for the
inner product, the Geometric Inner Product Null Space (GIPNS); usually, the G is omited, however it must
be noted that in some literature, a distinction between IPNS and GIPNS (or OPNS and GOPNS) is made.
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The geometric objects from R2 representable in CGA relevant to the scope of this paper are the embedded
point Ai = Q(xe1 + ye2), the point pair Pi = A ∧ B given by the outer product of two embedded points
A,B and the line L = A ∧B ∧ e∞ given by the wedge of points A,B and the null vector e∞. In addition
to geometric objects, there are elements of CGA that also represent transformations acting on these objects.
In particular, let us introduce the translator T and the rotor R. The translator T represents translation in
the direction of a vector t = xe1 + ye2 and in exponential notation can be written as

T = e−
1

2
te∞ . (3)

Similarly, the rotor R representing rotation around an axis L (given by a unit bivector, for example, the axis
representing rotation around the origin in R2 is given by e12) by an angle α is expressed in exponential
notation as

R = e−
1

2
αL. (4)

The transformations are applied to a multivector using the sandwich product. For example, for a rotation
around the origin of the line L by angle α, the rotated line Lrot is given by Lrot = RLR̃, where R̃ = e

1

2
αL

is the reverse of R.

2. 2D Snake Robot Model

The snake robot consists of a series of links of length 2l, connected by actuated joints, in our case revolute
joints. Denote the configuration space of the mechanism as the manifold Q ⊂ (R2 × (S1)3) with point
q = [x, y, θ, φ1, φ2] representing a configuration of the mechanism at the time t, see Fig. 1. We thus track
the coordinates of a head point (x, y), a global angle of orientation θ and relative rotation angles between
links φ1, φ2. The centre of every link is given by the point pi = (xi, yi), where passive wheels are attached.

x

Fig. 1: A configuration of the mechanism.

The derivation of the control model is similar to the description given in Hrdina et al. (2016), but with the
generalised transformations, we are able to model different mechanisms. The initial configuration of the
i–th link of the mechanism is represented by point pairs P 0

i = Ai ∧ Ai+1, where Ai are the edges of the
links, see Fig. 2. We represent a general transformation M defined by bivector L = L(q(t)) (depending
state q at time t) as

M = e−
1

2
L(q(t)),

and thus the reverse of M is M̃ = e
1

2
L(q(t)).

A general configuration is then represented as a sequence of transformations applied to the initial configu-
ration. Then the configuration of the i–th link at time t is given by

Pi =

1∏

j=k

MjP
0
i

k∏

j=1

M̃j = Tx,y

1∏

j=i

RjP
0
i

i∏

j=1

(R̃j)T̃x,y, , (5)

where Mj is the j–th transformation, Tx,y is the translator from the origin to the head point and R1 is the
rotor representing the rotation w.r.t. global coordinate axes θ and the rotors R2, R3 represent the relative
rotations φ1, φ2.
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Fig. 2: A three-link snake robot represented in CGA.

To obtain the differential kinematics, we need to express the velocities of the state variables defining the
mechanism’s configuration, that is ẋ, ẏ, θ̇, φ̇1 and φ̇2. The constraint imposed on snake robots is the non-slip
nonholonomic constraint, which limits the velocity of the i–th link to the direction defined by the point pair
Pi. In terms of CGA, we can express this constraint as

ṗi ∧ Pi ∧ e∞ = 0 (6)

where ṗi is the velocity of the i–th point pair’s centre pi. In fact, this condition expresses the geometric
fact that the velocity ṗi coincides with the line Pi ∧ e∞ passing through the point pair Pi. The centre pi is
obtained by the decomposition

pi = Pie∞P̃i. (7)

Taking the derivative w.r.t. time of eq. (7), we get

ṗi = ∂t(Pie∞P̃i) = Ṗie∞P̃i + Pie∞
˙̃Pi. (8)

Assuming the state of Pi is represented by k transformations, expressing Ṗi we arrive to

Ṗi = ∂t(

1∏

j=k

MjP
0
i

k∏

j=1

M̃j). (9)

The derivative of the general transformation M is then given by

∂tM = −1

2
(∂tL(q(t)))e

− 1

2
L(q(t)) = −1

2
L̇(q(t))M (10)

and thus the derivative of the reverse is ∂tM̃ = 1
2 L̇M̃ . By chain rule

L̇ = ∂tL(q(t)) =

n∑

i=1

(∂qiL)q̇i. (11)

Denoting ∂tM = Ṁ and expanding eq. (9), we get

Ṗi = ∂t(

1∏

j=k

MjP
0
i

k∏

j=1

M̃j) =

k∑

j=1

[Pi · L̇j ], (12)

utilising Lemma 1 from Hrdina and Vašı́k (2015) in the last step, with [Pi · L̇j ] = Pi · Lj − Lj · Pi being
the commutator w.r.t. the inner product. Substituting eq. (12) into eq. (8) we can write ṗi in the form of

ṗi =

k∑

j=1

[pi · L̇j ]. (13)

Finally, substituting Eq. (5) and Eq. (13) into the nonholonomic condition Eq. (6), we arrive to a set of three
differential equations with multivector coefficients:

(
θ̇ − 2ẋ sin (θ) + 2ẏ cos (θ)

)
I = 0,

(
φ̇1 + 2θ̇ cos (φ1) + θ̇ − 2ẋ sin (φ1 + θ) + 2ẏ cos (φ1 + θ)

)
I = 0,

(
2φ̇1 cos (φ2) + φ̇1 + φ̇2 + 2θ̇ cos (φ2) + 2θ̇ cos (φ1 + φ2) + θ̇−
−2ẋ sin (φ1 + φ2 + θ) + 2ẏ cos (φ1 + φ2 + θ)) I = 0,

(14)
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where I = e1e2e0e∞ is the pseudoscalar. Since I is nonzero, it holds that the coefficient of the pseu-
doscalar must be zero, and thus we have arrived to the dynamical system describing the differential kine-
matics of the 3–link robotic snake. We have obtained only three equations, meaning two more equations will
have to be added in order to define the control system for the mechanism. Denote u1 = u1(t), u2 = u2(t) as
the control inputs. Then by adding two equations φ̇1 = u1, φ̇2 = u2, the forward kinematics are obtained.
Note that the forward kinematics would be obtained by adding the equations ẋ = u1, ẏ = u2 instead. The
final control system can be represented in vector form as

q̇ = X1u1 +X2u2, (15)

where X1, X2 are control vector fields obtained by expressing ẋ, ẏ, θ̇ from eq. (14) along with the added
control inputs u1, u2. Setting an initial configuration q0 as q0 = [0, 0, 0,−π

3 ,
π
3 ] and the controls as

u1(t) = u2(t) = 1, the resulting motion can be seen in Fig. 3.

Fig. 3: The movement from the initial state in blue q0 into the final state qf in red.

3. Conclusion

The application of geometric algebra in tasks involving geometry leads to a much more intuitive descrip-
tion of the underlying problems. Another advantage of using geometric algebra is that models are easily
extended into higher dimensions - for example, in order to obtain the 3D planar locomotion model, it would
be enough to add an extra dimension representing the z-axis, which leads to the 3D CGA. The extra di-
mension would appear in the relevant places (representation of the configuration, transformations having an
extra dimension, etc.), but the formulas remain the same.
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