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Abstract: It is experimentally evident that size-dependent effects are observed in small samples of nano/micro-

scale dimensions. On the other hand, the classical theory of heat conduction is scale invariant. Incorporation 

of higher-order gradients of primary field variables into constitutive relationships yields a qualitative 

explanation of size-effects. Study of stationary heat conduction in bi-layer is rather simple 1D problem which 

can be solved analytically even within the higher-grade theory despite the high-order differential equations. 

Having known the exact solution, one can get a reliable analysis of size-effects with avoiding any numerical 

uncertainties. The influence of boundary conditions, material coefficients and geometrical dimensions on the 

temperature distribution in bi-layer is studied and discussed in this paper.    
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1. Introduction 

Thermal conductivity has always been described using a local theory. However, the local theory was unable 

to explain certain experimental observations occurring mainly in micro/nano length scale devices. Energy 

is transported by many different kinds of particles or excitations. The process is inherently nonlocal, since 

the particles or excitations arrive at a point in space having brought the energy from other points. Generally, 

a nonlocal theory of transport is required whenever the mean free path of particles or excitations is long 

compared to the distance scale of variations in the driving force (temperature gradient). Mahan and Claro 

(1988) developed nonlocal theory of thermal conductivity by phonons and shown that the need for nonlocal 

theory does not depend on whether T is large or small. Instead, it depends on whether 
2T varies rapidly 

on the distance scale of a phonon mean free path. Since the constitutive law in nonlocal theory is given by 

functional relationship between the heat flux and temperature gradient, the gradients of T  play a role 

inside the area of nonlocality (Sladek et al, 2022). 

2. Heat conduction equation within higher-grade theory 

Making use the 1st and 2nd law of thermodynamics, one can show that the rate of density of the Gibbs free 

energy for classical heat conduction process is given as (Sladek et al, 2022) 

, , 0
( , ) / 2

i jijg T T T T T T                                                                                        (1) 

where T , 
0T ,  , 

ij  stand for the temperature, reference value of temperature, entropy density, tensor of 

heat conduction coefficients, respectively. Furthermore, the Gibbs free energy is decreasing under 

irreversible processes, when the system is not in equilibrium, while in equilibrium reaches its minimum. 

Thus, minimization of the Gibbs free energy can serve as the variation principle for derivation of complete 
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formulation of the heat conduction process. In the classical theory, the heat flux vector (the amount of heat 

that flows through a unit area per unit time) is expressed by the Fourier law 
, ji ijT   . It is known that 

consideration of higher-grade gradients of field variables in continua models gives rise to scale dependent 

solutions and possible explanation of size effects observed in small size samples. Incorporating the 2nd order 

gradients of temperature into the Gibbs free energy functional (1), this becomes 
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i jij ijijkl klg T T T T T T T TT T                                                   (2) 

with 
ijkl being the tensor of higher order thermal conductivity coefficients, and 

,ij ijkl klT  is the 

energetically conjugated field to 
,ijT . For simplicity, we assume isotropic materials (

ij ij  ) and 

2

ijkl kl ijl    with l  being the microstructural-length scale parameter. Now, application of the variation 

principle to 2D stationary heat conduction problems with the functional corresponding to the Gibbs free 

energy density (2) yields the governing equation (Sladek et al, 2022) 

 2 2 2
1 0l T      , in                                                                     (3) 

and the possible boundary conditions for two pairs of boundary densities  ,T and  ,  : 
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with the heat flux  2 2

,
1

i i
n l T      and additional boundary densities : i j ijn n  , ,: k kn T  . 

2.1. Bi-layer composite system 

Consider two infinite layers A and B with perfect contact on their interface 0x  and prescribed temperature 

values 
aT  on their outer surfaces with 

ah being the layer thickness for  ,a A B . Then

   ,0 0, BAx h h   . Introducing the dimensionless coordinate, temperature and heat conduction 

coefficients by / By x h  ,  
0 0

( ) /T T T    ,  
0

/
a a

k    with 
0

T  and  
0

  being arbitrarily chosen, we have 

the general solution of the considered 1D problem is given as  
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The integration constants B  are specified for two kinds of boundary value problems (Sladek et al, 2022): 

(1) B  , ( / )A B Ah h   , (i) (1) 0  ,  ( / ) 0A Bh h   ;  (ii) (1) 0  ,  ( / ) 0A Bh h   . 

2.2.  Illustration of size-effects 

In this section, we illustrate the differences between the temperature distributions by the classical and 

higher-grade theory of heat conduction in bi-layer system represented by two infinite layers with perfect 

contact on interface. Furthermore, we discuss the conditions under which the size-effects occurs.  

Fig. 1 shows that no size-effect occurs in case of b.c. (i) for any values of the /a al h parameters in contrast 

to the case of b.c. (ii) as long as A B  .  
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Fig.1: Temperature distributions for two kinds of b.c.(variant (i) – left; variant (ii) – right) and various 

values of /A Al h  parameter in the bi-layer with 
A B   

In the composite bi-material layered system with 
A B  and / const 0.8B Bl h   (Fig.2), the size-effect 

occurs in case of both variants of b.c. and it is diminishing with decreasing /A Al h only in case of b.c. (i).  

      

Fig.2: Temperature distributions for two kinds of b.c.(variant (i) – left; variant (ii) – right) and various 

values of /A Al h  parameter in the bi-layer with 10A B  , / const 0.8B Bl h    

As long as at least one of the micro-length scale parameter /a al h is small (Fig.3), the size-effect is 

negligible in case of b.c. (i), while the size-effects is diminishing only very slowly with decreasing both 

/a al h parameters in case of b.c. (ii). 

The role of the ratio /A B  on the size-effect for temperature distribution in bi-layer with fixed rather large 

value of / / 0.8A A B Bl h l h  is shown in Fig.4 for both variants of additional b.c. in HGT.  

 

233

Sladek V., Sladek J. 233



      

Fig.3: Temperature distributions for two kinds of b.c.(variant (i) – left; variant (ii) – right) and various 

values of /A Al h  parameter in the bi-layer with 10A B  , / const 0.01A Al h    

   

Fig.4: Temperature distributions for two kinds of b.c. with fixed / / 0.8A A B Bl h l h  and various values 

of ratio /A B   in the bi-layer 

3.  Conclusions 

The main result of the study is revealing that the ratio /a al h is not the only parameter which affects 

occurring the size-effect for distribution of temperature in bi-material layered structure. The classical 

material parameters (
a ) as well as additional boundary conditions in HGT play a role.  
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