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ADVANCED CONTINUUM MODEL FOR THERMOELECTRIC
ANALYSES
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Abstract: The Seebeck effect is utilized in the thermoelectric materials to convert the waste heat directly
to electricity. A high electrical conductivity, low thermal conductivity and high Seebeck coefficient are
desirable for high thermoelectric conversion efficiency. For generation of a large voltage it is needed to
keep sustained large temperature gradients. Therefore, some research efforts are devoted to develop
thermoelectric composites with low thermal and high electric conductivities. Earlier research on macro-
sized structures has not been successful. Nanotechnology open a door to reduce thermal conductivity
without affecting the electrical conductivity. The heat transfer is realized by “larger” phonons than
electrons responsible for the electric conduction. The scattering of phonons is increased in nano-sized
structures and the thermal conductivity is reduced owing to the mean-free path of phonons becoming
comparable with the size of sample. Then, the classical Fourier heat conduction model appears to be
insufficient because of ignoring size effects. To consider the size effect an advanced continuum model for
heat transfer is developed here with including second order temperature gradients in constitutive law. The
governing equations involve higher-order derivatives of field variables. Therefore, it is necessary to
develop also a powerful computational tool to solve general boundary-value problems. The mixed finite
element method (FEM) is developed in this paper.

Keywords: Gradient theory for thermal conduction, Coupled problem, Seebeck effect, Size effect,
Mixed finite element method.

1. Introduction

Thermoelectric materials have a potential to convert waste heat directly into electricity (Minnich et al.,
2009; Bies et al., 2002). However, this thermoelectric material property has not been utilized up to date
in engineering applications because of low thermoelectric conversion efficiency. A high electrical
conductivity, low thermal conductivity and high Seebeck coefficient are required for high
thermoelectric conversion efficiency. It is not easy to satisfy these requirements simultaneously even in
composite materials (Cao et al., 2008) in macro-sized structures. The classical continuum model is
applicable to simulations in such structures. However, in nano-sized samples it is possible to reduce
thermal conductivity without a reduction of the electrical conductivity (Boukai et al., 2008). The heat
transport in nano-sized structures is decreased because of increasing scattering of phonons when the
mean-free path of phonons is comparable with the size of samples . Thus, the size effect is observed in
nano-sized structural elements. Obviously, the classical Fourier heat conduction model becomes
inapplicable because of absence of sample size dependence in classical models.

Allen (2014) has introduced a generalized continuum model based on the nonlocal expression of the
heat flux with temperature gradients. Introducing a spatial size effect into the governing equations for
heat transfer it is possible to explain the incorrect results obtained by classical thermal wave models
(Yu et al. 2016). A similar nonlocal model was also applied to nonlocal thermoelasticity using
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Eringen’s nonlocal theory (Yu et al., 2015; Sarkar, 2020). Numerical results showed that thermal
nonlocal parameters may become a new indicator required for a real modelling of the heat transport in
nano-sized structures.

In the present paper, an advanced continuum model for heat transfer is applied to the coupled
thermoelectric problem in nano-sized structures. Higher-order derivatives of temperature and higher-
grade heat flux are occurring in this model. Boundary-value problems for coupled fields with higher-
order derivatives in governing equations are very complex, and a powerful computational tool to solve
them is required. The finite element method (FEM) is often convenient to solve similar problems.
However, the standard C°-continuous elements cannot be applied here due to the higher-order
derivatives involved in this new gradient theory. A mixed FEM formulation is developed here with C°
continuous interpolation independently applied to the temperature and its gradients. For the electric
field, there is no need to employ gradient theory and the standard C° elements are used. The
computational method is verified on simple examples where analytical solution is available.

2. The mixed FEM in gradient theory of thermoelectricity

The constitutive equations for the heat conduction vector 4, and the electric current J; in the classical

theory of thermoelectricity are given as (Yang et al., 2013)
A =-x,0,+,E,

/ARy
Ji=s;E,-¢,0, ()
where «; and s, are the heat and electrical conductivities, respectively. Symbols ¢ and Z.j are used for
the generalized Seebeck and Peltier coefficients, which are correlated via the absolute temperature 7
as ¢, =¢;T,, with T being the reference temperature and 6 =7 T .
The electric intensity vector E; is related to the electric potential ¢ by
E==9,. 2)

Electric processes are much faster than thermal ones and a quasi-static approximation for the electric
fields is assumed. Then, the stationary governing equation is valid

Ji,i = 0 . (3)
The heat conduction equation in the gradient theory is given as (Sladek et al. 2020)
A (X)=my  (X)+ pcd=0, (4)

where m,, is the higher-grade flux considered as canonically conjugated field with @, . In linear theory,

M = &0 jy and assuming the new material coefficients as o, = ~I’8,x, , we have the additional

i
constitutive relationship
my =—I'K,0 , . (5

Furthermore, p and ¢ are the mass density and specific heat, respectively. Note that the number of
additional material coefficients is reduced to only one internal material structure parameter/ .
The amount of boundary conditions (b.c.) is increased and the definition of boundary densities are
modified in higher-grade theory of heat conduction. Possible boundary conditions in considered
thermo-electric problem are given as:
Essential b.c.: 6(x)=0(x) on r,, r,cr

pxX)=p(x)onl, , I' cl (6)

p(x)=¢(x) onT,, T,cT
Natural b.c.: A(x)=A(x)onT,, I, UT, =T, T, NT,=0

P(x)=P(x) onT,, I,UT, =T, T,NT, =& (7)

0x)=0(x) on T, , T,UT, =T, T,NT,=2.
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In above b.c., O =n,J,, is the flux of electric current and the generalized heat flux is defined as

A= (%= )= L s Jox-x), ®

M= Tmy ©)
with #n, and 7,the Cartesian components of the unit outward normal and tangent vector ondV,
respectively, and the possible jump at a corner on the oriented boundary contour 0V, defined as

[#G) = px =0~ x4 0). (10)
Additional boundary quantities occurring in the gradient theory of heat conduction are:
p=00/on, P=nnm, .
For an isotropic material, the heat and electrical conductivities, and Seebeck coefficient are given as

_ _ =S 2
s, =00;,6, =000, , K; =K0, —(a (7T+K)5,.j ,

and the thermoelectric conversion efficiency in the classical theory, ZT =a’cT /k , is replaced by
_ a’ocT a’ocT
Ck—x(l/L) Tk
in higher-grade thermoelectricity (Sladek et al. 2020).

B

The FEM equations are derived from the weak-form of the governing equations (3) and (4)
Iy (400, + my 50, + 08, — pcf0)dV =[- ASOdT + [ PSpdT + Ir, 05¢dr . (11)

Standard 2D elements with CP-continuous approximation are used for temperature and electric
potential

€:N9(§1:§2)q5 5 ¢:N¢(§1,§2)q¢a (12)

where q, and q, are the nodal temperature and electric potential, respectively.

The electric intensity vector, and temperature gradients are approximated according Eq. (12) as:

E, 0, 0, 0,
_E:_ E2 = 82 ¢:B¢(§17§2)q¢ bl €= QZ = az €:B9(§I7§2)q9 > (13)
In the mixed FEM an independent approximation of temperature gradients, &, is required
&"=A,(6.5)e, (14)
where a is a vector composed of undetermined coefficients and
X4 . . . R
2 the polynomial function matrix for 4-node quadrilateral element
can be selected as
0,1:0 Ag(§]7§2):[1 §1 érz 5152]'
=T, 0 X The coincidence of the two independent approximations of the
¢: ¢ 7 temperature gradients at Gauss quadrature points §° =(&/',<&;),
0 |l 49 =0 gives unknown coefficients
=T, a=A,'(€)B,(E)a,
¢:¢L and the final expression for the independent approximation of €

is given as

g = Ag(§1a§3)Lq9 >
where L=A_"(&)B,(&°).
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To verify our FEM formulation and the corresponding computer code, an infinite strip — 1D problem is
analyzed. An analytical solution is derived in work (Sladek et al. 2020)
00)=T,-T,=0, 6(L)=T, -T,, 6'(0)=0=0'(L), ¢(0)=¢, , ¢(L)=¢,.

0.6
] o - Analytical Numerical
] o ———— =i =|
0.4 _:_f’ I/1=0.1 °©  M=0.1
] . w02 &  [=02
-‘-"M« e - U=07 o VL=0.7

0.2 3

1.0

x*=x/L.

Fig 1: Variation of conversion efficiency Z7 with different ratios /L.

One can observe a significant enhancement on the Z7 parameter when the internal size parameter / is
increased.
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