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Abstract: The direct correlation between classical mechanics of material points (Lagrange principle of clas-
sical mechanics) and classical continuum mechanics can be established when the existence of a trajectory and
a friction force are added. The important role of the total enthalpy follows from a variational analysis. More-
over, the thermodynamic criterion of the stability is formulated using the total enthalpy and compared with
the experiments, numerical and the classical Rayleigh theory supports its applicability. It was shown that the
solid body vortex is at the margin of stability, which is experimentally observed. Analogously, the potential
vortex is by the thermodynamic criterion stable, however by the Rayleigh criteria it is on the onset of stability.
The loss of stability of the forsed vortex (solid body vortex) is the main reason why it transforms into a free
vortex (potential vortex). The classical Taylor experiment of flow between two rotating cylinders is analyzed
from the point of view of this criterion. Recently, the vortex transformation process has been demonstrated
both experimentally and by numerical simulations for the case of a vortex tube at the Institute of Aerospace
Thermodynamics at Stuttgart (Seibold, 2022) and experimentally for the annular nozzle flow at the Institute of
Thermomechanics CAS in Prague.

Keywords: Principle of the least action, Thermodynamic stability condition, Annular swirl flow, Vortex
tube.

1. Introduction

In the mechanics of mass points (MP) in the case of conservative force fields (in the so-called Hamiltonian
mechanics), the principle of least action is sufficient to describe their time evolution. Continuum mechanics
can also be formulated using the extremal principle, but the physical meaning of the corresponding La-
grangian is extended both by the internal energy of the corresponding material point (MP) and by contact
interaction (friction) with surrounding material points. Formulated in this way, the variational principle of
continuum mechanics shows that the total enthalpy reaches its extreme value (minimum) even for processes
with convection (Seliger, Witham , 1968).

2. Classical mechanics of continuous mechanical systems

The most general formulation of the laws governing the motion of all mechanical systems composed from
many interacting particles is so-called the principle of the least action or the Hamilton principle (Seliger,
Witham , 1968). In the application to the continuous system, see Fig. 1, we can evaluate the action S in the
fix volume V with the surface ∂V between the instants t0, t1 as follows

S (v,β,X) =

∫ t1

to

∫

V
ρ

[
v2(x, t)

2
− Φ(x)− u (ρ(x, t), s(x, t))−X(x, t)β̇(x, t)

]
dυdt

=

∫ t1

to

∫

V
ρl(v(x, t),β(x, t),X(x, t))dυdt (1)

Specific lagrangian is l(v(x, t),β(x, t),X(x, t)).
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The standard abbreviation (̇) is used for material
derivative and further, the kinetic energy of ma-
terial point is v2

2 and Φ is the potential energy,
Xβ̇ =

∑3
L=1X

Lβ̇L = xiβ̇i(x, t) is the en-
ergy of interaction (friction) with surroundings and
u (ρ((x, t)), s((x, t))) is the internal energy of the
material point (M.P.). This variational principle (1)
can also be applied to rigid bodies when internal en-
ergy u(e, t), depends on the Euler deformation ten-
sor e(x, t). The independent quantity is the trajec-
tory x(X, t) of the M.P. X and the velocity v(x, t)
and friction force β(x, t) satisfy supplementary con-
ditions. We suppose that each material point has the
initial position X-at some instant t0. Its motion is
described by the trajectory x(X, t) (with the inverse
mapping Xx = xX = I) and the motion of all material
points materializes in the velocity field v(x, t).

Fig. 1: At the G.P. (x, t) has the M.P. X the ve-
locity field v (x, t) and its interaction force is
β̇(x, t).

2.1. Necessary conditions of the least action

Material point X = X̃(x, t) intersect the geometrical point (G.P.) x and interacts (exchanges the energy)
with the surroundings due to friction force β̇. The general laws of mechanics and thermodynamics have
to be valid for all material points, i.e. for all trajectories which intersect this point x = x̃(X, t). So that
the necessary condition of the extremum of the functional (1), with respect to the variations (fluctuations)
δx̃i(X, t) = x̃i(X, t)− x̃i0(X, t), of the M.P. trajectory are as follows

δS =

∫ t

to

∫

V
(ρδl + lδρ) dυdt =

∫ t

to

∫

V

{
ρ

[
−β̇L

∂X̃L

∂xi
− ∂Φ

∂xi
− T ∂s

∂xi

]
δx̃i +

(
l − p

ρ

)
∂ρ

∂xi
δx̃i

+ ρ

(
vi −XL∂βL

∂xi

)
∂δx̃i

∂t
+

[
∂ρ

∂t
+
∂(ρvi)

∂xi

]
XLδβL + ρ

(
∂XL

∂t
+ vi

∂XL

∂xi

)
δβL

}
dυdt

−
∫

V
ρXLδβLdυ

∣∣t
to
−
∫ t

to

∫

∂V
ρvixlδβLdaidt = 0, (2)

where x̃i0(X, t) is unknown optimum (reference) trajectory, which satisfy extremum condition (2). Velocity
variation δvi = δ ˙̃xi depends on the δx̃i(X, t). The extremum conditions relevant for our flow stability
problem are

vi = XL∂βL
∂xi

=
∂

ϕ(x,t)︷ ︸︸ ︷
(XLβL)

∂xi
− βL

∂XL

∂xi
= vi pot + vi rot, vi pot =

∂ϕ

∂xi
, vi rot = βi = −βL

∂XL

∂xi
(3)

The vorticity rot v is generated by friction or by the entropy gradient, as it will be shown later and it can
induce the instability. The laws of conservation of the energy in the G.P. is

l − p

ρ
= −XL∂βL

∂t
− ht =0 ...energy conservation, for ht =

v2

2
+ u+

p

ρ
+ Φ (4)

and the static pressure p(x, t) is equal to Lagrangian density ρl (1). Total enthalpy ht depends on the local
friction force, only . For the local stationary friction field, i.e., ∂(β)/∂t = 0, the total enthalpy of the fluid
is constant. From point of view of classical mechanics of mass points, the total enthalpy is the integral of
motion and ht can be taken as an adiabatic invariant. The balance of momentum can be reformulated in
the measurable quantities as follows

−β̇L
∂X̃L

∂xi
− ∂Φ

∂xi
− T ∂s

∂xi
= 0 elimination of β,

∂vi
∂t
− (v × rot v)i = −∂ht

∂xi
+ T

∂s

∂xi
+
∂Φ

∂xi
(5)

or − (v× rot v)i = −∂ht
∂xi

+ T
∂s

∂xi
+
∂tlidis
ρ∂xl

Crocco theorem-for steady state only (6)
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The friction (dissipative) forces in actual system are established explicitly by the dissipative part of the
stress tensor tdis, which represents the effect of surface forces and s(x, t) is the entropy. Nevertheless, even
for isentropic flow with ht=0, the volume force can induce the vortex generation.

3. Thermodynamic stability conditions

Definition of entropy S follows from the global form of the II. Law of thermodynamics formulated as the
balance of the total entropy

Ṡ − JD(S) = P (S) ≥ 0, for P (S) =

∫

V
σ(s)dν ≥ 0 (7)

where JD(S) is entropy flux, P (S) ≥ 0 is total entropy production and σ(S) ≥ 0 is the density of entropy
production. The thermodynamic stability criterion can be formulated by ht, see (Maršı́k, 1999). The entropy
is the function of ht, p and the thermodynamic inequality (II. Law of thermodynamics) is

π = Tσ(S) = ρ (T ṡ+
1

ρ

∂p

∂t
− ḣt)

︸ ︷︷ ︸
=0...entropy definition

−q
k

T

∂T

∂xk
+
∂(tkidisvi)

∂xk
≥ 0, −ρ

2
˙

d2ht = π, (8)

for π < 0 is the thermodynamic inequality violated and the instability can occurs. The inequality (8) is the
thermodynamic condition for the stability of the process.

4. Consequences of thermodynamic stability conditions.

For the simplified flow, vϕ = vϕ(r), T = T (r) has the form

π̃ =
λ

T

(
∂T

∂r

)2

+ µ

[(
∂vϕ
∂r

)2

+ vϕ
∂2vϕ
∂r2

− vϕ
r

∂vϕ
∂r

]
≥ 0 (9)

Considering that the thermal conductivity is a positive coefficient λ > 0 the associated term is always
positive and will only have a stabilizing effect. We therefore focus only on the influence of the flow field
vϕ(r), where the viscosity µ plays dominant role.

vϕ = ωr then π̃ = 0 solid body vortex with angular velocity ω (10)

vϕ = Γ/r then π̃ = 4Γ2/r4 ≥ 0 potential vortex

The solid body vortex is on the onset of stability and the potential vortex with circulation Γ is stable.

4.1. Couette flow

The stability condition

π̃

µmol
=

4Ω2
1η

4(1− µ)2

r̃4(1− η2)2
≥ 0 (11)

can also be interpreted in the following way

π̃

µmol
=

4Ω2
1η

4

r̃4
> 0 (12)

for (1− µ)2 = (1− η2)2

or Ω1 = Ω2

(
R1

R2

)−2

and

Ω1 = Ω2

(
2−

(
R1

R2

)2
)−1

(13)

The onset of instability is given by the black straight lines Ω1 =
1.292Ω2, for Ω2 > 0- (right) and for−Ω2 ∈ (−250, 0) by Ω1 =
−Ω2(

R1
R2

)2−2
= 0.815Ω2-(left). Considering that for a given ratio of

R1/R2, which is always less than 1, the inner cylinder can rotate
even faster than the outer one, see Fig. 2.

Fig. 2: Onset of coherent structures (instability)
for a viscous flow between two rotating cylinders
for η = R1/R2 = 0.8798 (Taylor-Couette flow)
(Taylor, 1923).
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The thermodynamic stability criterion of the process (9), which respects the existence of viscosity, supple-
ments the purely mechanical Rayleigh criterion with an additional condition that can be interpreted as the
onset of coherent structures (Taylor-Couette flow).

4.2. Annular swirling jet experiments

The scheme of the present setup is shown in Fig. 3. The settling chamber located upstream at the nozzle
operated as the swirl generator. For this purpose, the chamber was supplied with axial (main) and swirling
(tangential, control) air flow inlets with the mass fluxes mA and mS , respectively.

Fig. 3: The annular nozzle and
tested configuration. 1: outer nozzle
body, 2: nozzle centerbody, 3: ax-
ial air flow supply, 4: swirling air
flow supply through a pair of tan-
gential ports (diameter 3.1 mm); H:
nozzle-to-wall spacing, E: center-
body extension. Dimensions: D0 =
17.6 mm, Di = 15.85 mm, and E =
4.1 mm.

Fig. 4: PIV measurement with cross-stream velocity profiles and
streamwise velocity component at different distances measured
from the bottom part of the nozzle centerbody (0.2-2)D0. The ex-
periments were performed at Re = 5000 for five variants of the jets
depending on the swirl number S from 0 to 0.32

The experiment in Fig. 4 shows how the annular current forms into a potential vortex. If the viscosity of the
fluid is non-zero, the potential vortex is more stable under the given conditions than the solid body vortex,
see thermodynamic stability condition (10).

5. Conclusions

To underline it the thermodynamic criteria of stability of the steady state and the stability of the processes
are applied to two specific cases. These findings can be satisfactorily unified by using the properties of total
enthalpy. The important role of the total enthalpy for inviscid flow follows from the variational analysis
(Seliger, Witham , 1968). The use of total enthalpy offers a somewhat more general view on the stability of
flow of viscous fluids.
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