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Abstract: An elastodynamical model of a cantilever beam coupled with a piezoelectric sensor is introduced
and its discretization using the finite element method is presented. The mathematical model includes additional
terms that enforce the floating potential boundary condition for keeping a constant charge on an electrode of the
sensor. The behaviour of the model is illustrated using a numerical example corresponding to an experimental
setup, where vibrations of the beam and the potential on the sensor are measured.
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1. Introduction

In this contribution we describe a theoretical elastodynamical model of a cantilever beam with an attached
piezoelectric sensor. The setup models the experiments reported in (Kolman et al., 2023) in these proceed-
ings. The work represents our initial step in research towards employing the piezoelectric and flexoelectric
effects for energy harvesting (Hamlehdar et al., 2019) and related investigation of acoustic/dynamical prop-
erties of periodic 3D printed active meta-materials — we have deliberately used a simple experiment to
calibrate our measuring equipment and modelling tools.

The finite element (FE) (Zienkiewicz et al., 2013) model is defined in terms of the stress–electric displace-
ment formulation of piezoelectricity (Yang, 2018). The floating potential boundary condition is applied to
model the voltage measurement using a voltmeter with a large internal resistance – this condition introduces
an additional unknown to the model. Illustrative results of a numerical calculation are presented.

2. The Finite Element Model

The model presented below corresponds to our experimental setup (Kolman et al., 2023), where a cantilever
beam is firmly attached on one end and statically deformed by a weight hanging on a thin nylon string from
the other end. The weight is then suddenly removed by cutting the string and the beam vibrations in a
selected point and the voltage generated on the sensor piezoelectric sensor glued to the beam are recorded.

Let us consider a body with domain Ω ⊂ R3 consisting of an elastic part ΩE and a piezoelectric part
ΩP . In our setting, the elastic part is the cantilever beam fixed on its side Γu, and the piezoelectric part is
the cylindrical sensor attached to the beam as shown in Fig. 1. Under linear assumptions, the constitutive
relations of the piezoelastic solid in ΩP can be written as

σ = CPε− eTE , d = eε+ κE , ε =
1

2
(∇u+∇Tu) , E = −∇φ , (1)

where the mechanical stress σ (in Voigt notation vector ordering) and the electric displacement d are pro-
portional to the mechanical strain ε and the electric field vector E, u is the mechanical displacement
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Fig. 1: The computational domain with the FE mesh. A static weight is attached to the bottom side at the
point W at time t = 0 s. Dynamic motion quantities are recorded in the point L, corresponding to the point
of laser vibrometer measurements in the related experiments.

vector, φ the electric potential, CP the matrix of elastic properties under constant electric field intensity,
e the piezoelectric modulus and κ the permittivity under constant deformation. In ΩE we have simply
σ = CEε. The strong form of our piezo-elastodynamics problem to be solved in time t ∈ [0, T ] is: Find
u, φ, φ̄(t) such that

ρü−∇ · σ = b in Ω× [0, T ] ,

∇ · d = 0 in ΩP × [0, T ] ,

u = 0 on Γu × [0, T ] ,

φ = 0 on Γp0 × [0, T ] ,

φ = φ̄(t) on ΓpQ × [0, T ] such that
∫

ΓpQ

(κ∇φ) · n = Q ,

u|t=0 = u0 , u̇|t=0 = u̇0 , φ|t=0 = φ0 in Ω ,

(2)

where ρ is the material density and b are the self-weight volume forces. Zero potential is prescribed on
Γp0, the bottom side of the piezo-sensor that is attached to the beam. The scalar φ̄(t) on the top side of the
sensor ΓpQ is an additional unknown variable, so called floating potential, that evolves in time so that the
initial charge Q on ΓpQ is conserved. Zero Neumann boundary conditions are applied on the parts of ∂Ω
not mentioned above. The initial charge is determined from the initial state u0, u̇0 and φ0 corresponding to
a static loading of the body by a localized surface force of a weight attached at point W in Fig. 1.

Let V u
0 (Ω) = {u ∈ [H1(Ω)]3,u = 0 on Γu}, V φ

0 = {φ ∈ H1(Ω), φ = 0 on Γp0}. The weak form of (2)
is then: Find u, φ, φ̄(t) such that

∫

Ω

ρv · ü+

∫

Ω

ε(v)TCε(u)−
∫

ΩP

ε(v)TeT∇φ−
∫

Ω

v · b = 0 ∀v ∈ V u
0 (Ω) , (3)

∫

ΩP

(∇ψ)Teε(u) +

∫

ΩP

(∇ψ)Tκ∇φ−
∫

ΓpQ

(κ∇φ) · nψ +

∫

ΓpQ

(κ∇ψ) · n(φ− φ̄) = 0 ∀ψ ∈ V φ
0 (Ω) , (4)

∫

ΓpQ

(κ∇φ) · n−Q = 0 , (5)

where (5) expresses the floating potential condition and the last two terms in (4) correspond to the weak
enforcement of the Dirichlet boundary condition φ = φ̄(t) on ΓpQ using the non-symmetric Nitsche’s
method (Nitsche, 1971) without the penalty term (Burman, 2012).

The FE discretization of the model uses the approximations

u(ξ) = Nu(ξ)u , φ(ξ) = Nφ(ξ)p , φ̄ = 1p̄ , (6)

where Nu(ξ), Nφ(ξ) are the shape functions for the discretization of the displacements and the potential,
respectively. Substituting (6) into (3)–(5) yields the following semi-discrete equations:




M 0 0
0 0 0
0 0 0






ü
p̈
¨̄p


+




K −BT 0
B C− F+ FT −FT1
0 1TF 0






u
p
p̄


−




b
0
Q


 = 0 , (7)

52

52 Engineering Mechanics 2023, Svratka, Czech Republic, May 9 –11



where M is the mass matrix, K is the stiffness matrix, B is the piezoelastic coupling matrix, C is the
electrostatic potential matrix and b the volume forces vector. The surface flux matrix F =

∫
ΓpQ

NT
φnκN

′
φ

serves to impose weakly the floating potential condition, together with 1, the matrix of ones, used to sum
the rows of F, performing thus the integration of (5). Because the potentials p, p̄ occur in (7) without time
derivatives, a time discretization scheme needs to be applied only to u. We use the implicit second order
Newmark method (Newmark, 1959) with the standard settings β = 1

4 , γ = 1
2 , leading to the following

linear system solved in every time step n:



M+ β∆t2K −BT 0
β∆t2B C− F+ FT −FT1

0 1TF 0






an

pn

p̄n


 =




b
0
Q


 , (8)

where ∆t is the current time increment, un = un−1 + ∆tvn−1 + ∆t2((12 − β)an−1 + βan), and vn =
vn−1 +∆t((1− γ)an−1 + γan).

3. Numerical Example

To illustrate the behaviour of the model described above we simulate the time evolution of the setup in
Fig. 1 for t = [0, 0.02] s with the following material parameters:

• Steel elastic beam: ρ = 7800 kg/m3, E = 210 GPa, ν = 0.3.

• Piezoelectric disc: ρ = 7800 kg/m3, the vacuum permittivity ε0 = 8.8541878128 · 10−12 F/m and

in Voigt notation: CP =




127.2050 80.2122 84.6702 0.0000 0.0000 0.0000
80.2122 127.2050 84.6702 0.0000 0.0000 0.0000
84.6702 84.6702 117.4360 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 22.9885 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 22.9885 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 23.4742




GPa,

e =




0.00000 0.00000 0.0000 0.0000 17.0345 0.0
0.00000 0.00000 0.0000 17.0345 0.0000 0.0

−6.62281 −6.62281 23.2403 0.0000 0.0000 0.0


 C/m2, κ = ε0




1704.4 0.0 0.0
0.0 1704.4 0.0
0.0 0.0 1433.6


 F/m .

All results reported here were obtained using the Open Source finite element software SfePy (Cimrman
et al., 2019; Cimrman, 2021). The initial state was a result of a static calculation with the gravity load by
280 g weight attached in the point W . Zero Dirichlet boundary conditions were applied to φ on both sides
of the piezoelectric disc, corresponding to a short-circuited state. The initial charge Q =

∫
ΓpQ

(κ∇φ) · n
was determined to be −3.06 · 10−8 C. The transient calculation then proceeded as described in (3)–(5),
resp. in (8). Time histories of u, u̇ and ü in the point L were recorded, as well as the charges on the
ΓpQ (top) and Γp0 (bottom) disc surfaces and the floating potential φ̄, which corresponded directly to the
measured voltage, see Fig. 2. To verify the time-dependent calculation, we computed the Lomb-Scargle
periodogram (Lomb, 1976; Scargle, 1982) of u3(t) in L (Fig. 2–B). The principal frequency of the signal
agrees well with the red vertical line marking the lowest frequency f1 = 166.3 Hz determined by the
modal analysis. This value is also consistent with the theoretical frequency 161.1 Hz and the experimental
value 159.4 Hz reported in (Kolman et al., 2023) in these proceedings. The effect of the floating potential
boundary condition can be seen in Fig. 2–C, where Q(t) on ΓpQ is kept constant.

4. Conclusion

A mathematical model of dynamics of a cantilever beam with a piezoelectric sensor and its FE discretization
were presented. A particular treatment of the floating potential boundary condition was shown. The outputs
of our custom SfePy-based computer implementation were illustrated using a numerical example, designed
to follow the experiments in (Kolman et al., 2023) and to verify the correctness of our implementation. In
future, the results will be compared in detail to the experimental data reported in (Kolman et al., 2023) and
the model will be fitted to accurately describe each of the measured data sets.

Acknowledgments

This work has been supported by the grant 23-06220S of the Czech Science Foundation within institutional
support RVO:61388998.

53

Cimrman R., Kolman R., Musil L., Kotek V., Kylar J. 53



A) u3(t) in the laser sensor point L. B) Periodogram of u3(t) in L.
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C) Q(t) on the ΓpQ and Γp0 sides of the sensor. D) φ̄(t) on the ΓpQ side of the sensor.
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Fig. 2: Time histories of the recorded quantities (A, C, D) and the periodogram (B) of u3(t) in L with the
the vertical red line marking the lowest frequency determined by the modal analysis.
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