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Abstract: Fractional calculus seems to be highly academic and artificial tool, but the opposite is true. The
fractional calculus, i.e. the theory of derivatives and integrals of non-integer order, is applicable for describing
many phenomena like signal processing or diffusion problems. For our research the prominent utilization is
the fractional viscoelasticity for modeling a laminated glass interlayers. This theory can effectively describe
polymer behavior in short term, where standard generalized Maxwell model is accurate only if utilizing a large
number of cells. It seems that this approach is much natural, but on the other hand it brings a non-integer
derivative of the displacement field into the governing equations, which induce some difficulties in numerical
time integration. This paper is the beginning of research of the applicability of fractional models to describe
the behavior of the interlayer in laminated glass.

Keywords: Laminated glass, fractional viscoelasticity, generalized Maxwell chain, PVB interlayer,
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1. Introduction

Fractional viscoelasticity, see (Koeller, 1984), assumes that stress is proportional to a non-integer time
derivative of strain. This approach overcome some difficulties of standard models based on rheological
combination of springs and dampers. The main drawback of such models is its impossibility to describe
sufficiently the whole time domain. For example, in the generalized Maxwell chain model the precision is
improved by adding more Maxwell cells, but extremely small and extremely large times are still not covered.
The correct behavior is met only in a limit case, i.e., in a scheme with infinite number of Maxwell cells.
The fractional viscoelasticity can be suitable tool for overcoming this difficulty and prospectively it can
improve the accuracy of the description of viscoelastic materials with a smaller number of parameters. On
the other hand this constitutive fractional relationship causes difficulties in performing time integration. For
example, after spatial discretization by the finite element method, we obtain a set of fractional differential
equations, which require the use of special integrators, see for example (Diethelm et al., 2005) or (Jacobs,
2020).

The application of fractional theory in laminated glass modeling was investigated for example by Paola et
al. (2021), where the springpot was used as a rheological scheme. This approach leads to a linear relaxation
function in the log-log space, which is adequate for a long time scale, but can be insufficient for high-
velocity processes like impact, see the graph in Figure 2a. Therefore, more-element schemes and their
practical usability are investigated in this article, based mainly on the results by Bonfanti et al. (2020).

2. Fractional viscoelasticity

The stress is proportional to the strain in elasticity whereas the stress is proportional to the strain rate in a
viscous medium. The fractional viscoelasticity generalized this rule in the sense that all intermediate values
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are allowed, i.e. the stress σ is proportional to the α-derivative of the strain ε

σ(t) = ξDαε(t), (1)

where Dα stands for a non-integer derivative operator of the order of α and ξ is proportionality constant.
The limit case α → 0 represents an elastic spring whereas the case α → 1 represents a viscous damper.
The parameter ξ has no clear physical meaning, so it is preferred to define this constant through elasticity
E and viscosity η of limit cases as

σ(t) = EταDαε(t), (2)

where τ = η/E is well-known relaxation time. This constitutive relationship is visually represented by
rhombus and is called springpot, see Figure 1a. The springpot alone is one of the possible rheological
models. As in classical viscoelasticity, we can combine the springpot with other rheological elements into
more complex structures. Some useful equations are presented in following part and their applicability is
investigated in the next section.

Springpot itself is described directly by equation (2), where setting ε(t) = H(t) allows us obtain re-
laxation modulus R(t). Here, the function H(t) represents the Heaviside step function. The technicalities
about fractional derivatives are not presented here because it is out of scope of this article. Recall, however,
that at first glance, the trivial derivative on the right-hand side of equation (2) does not have a unique so-
lution and we adopt the Riemann-Liouville fractional derivative rather than the Caputo one. The resulting
relaxation function takes the following power form

R(t) =
E

Γ(1− α)

(
t

τ

)−α

. (3)

Maxwell cell is a serial connection of an elastic spring and a viscous damper. If the damper is replaced by
the springpot, the fractional Maxwell model is obtained, see Figure 1b. The governing fractional differential
equation

Dασ(t) +
σ(t)

τα
= EDαε(t), (4)

induces the following relaxation function

R(t) = E · Eα,1

(
−
(
t

τ

)α)
, (5)

where Eα,β is the Mittag-Leffler function. It is worth noting the similarity of equation (4) with the ODE of
classic Maxwell cell. The difference is that the first derivative was replaced by the α-derivative. Also the
solution has the same structure, only the exponential function was replaced by the Mittag-Leffler function.
In the limit case, it even holds that E1,1(x) = exp(x).

Generalized Maxwell model of N Maxwell cells and one spring can be further generalized by replacing
all dampers with springpots, see Figure 1c. The solution of relaxation function is obtained superpositionally
as

R(t) = E∞ +

N∑

n=1

En · Eαn,1

(
−
(

t

τn

)αn
)
. (6)

3. Applicability of models

This article is a part of the research focused on the laminated glass response, where certain class of polymers
is used. From that reason, this section investigates the usability of fractional models for the Ethylene-vinyl
acetate (EVA) and the Polyvinyl butyral (PVB) materials only, but the results can be qualitatively extended
to other materials.
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Fig. 1: Basic fractional rheological models: springpot (a), fractional Maxwell cell (b) and generalized
fractional Maxwell model (c).
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Fig. 2: Example of experimentally obtained relaxation modulus of EVA and PVB foil (a) and relaxation
modulus induces by several models (b).

Although the springpot generalizes the elastic or viscous response, its applicability is not wide. It can be
evident from the structure of the relaxation function (3), which is linear in the logarithm space. To the best
of the author’s knowledge, polymers in a laminated glass do not have this power-law property in the whole
time domain and the springpot itself cannot be used. This is evident in Figure 2a, where experimentally
obtained relaxation functions for PVB and EVA in time regime are plotted. The original data was obtained
from plate-plate torsional rheometer, where a cylindrical specimen drilled out from a laminated glass was
tested. The plotted data are the results of the utilization of time–temperature superposition principle to
extend time domain. The details of experiments can be found in Hána et al. (2020).

Figure 2b displays the qualitative analysis of standard against fractional Maxwell model. The blue line
is representative of the standard three-element Maxwell chain (spring and one Maxwell cell connected in
parallel) with the relaxation time τ1 = 1 and E∞ = 1, E1 = 2. It is evident that this model can predict
the viscoelastic behavior on the small time scale only, whereas at times farther from the relaxation time,
the model predicts elastic behavior. This regime of interest can not be effectively enlarged and the same
holds for the slope of the curve, which can not be change directly, but is determined indirectly from other
parameters. Therefore, extra Maxwell cells with different relaxation times are added. As a result, larger
time domain is described by the model, but with possible bumps, see the orange line in Figure 2b, where
parameters τ1 = 1, τ2 = 1000, E∞ = 1, E1 = 1, E2 = 1 were used. It is necessary to add another cells
to smooth the curve. One way how to overcome this drawback is using the fractional Maxwell model,
which has, through additional parameters αn, the desired property - it can change the slope of the curve and
better describe the behavior of the material, see the green line in Figure 2a, which represents model (6) with
τ1 = 1, E∞ = 1, E1 = 2, α = 0.3.

This advantageous behavior is also seen from the fitting process in Figure 3a and 3b, where the generalized
standard and fractional Maxwell chain models are calibrated to experimental data from Figure 2a. The
standard model can not sufficiently describe the observed behavior with a few cells and the only way
to raise precision is to add more cells into the chain. Therefore 6 Maxwell cells, with relaxation times
τ = {10−2, 10−1, 100, 101, 102, 103} for PVB and τ = {101, 103, 105, 107, 109, 1011} for EVA, were used
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Fig. 3: Calibration of standard and fractional generalized Maxwell chain for experimentally obtained data
of PVB (a) and EVA (b) foil.

to obtain a relatively precise response. In contrast, the fractional generalized Maxwell model can fit the data
very accurately even when using the three-element fraction model, see orange line in Figure 3. Another
benefit of the fractional model is its extensibility outside the experimentally measured time domain, which
can be used not only to extrapolate the relaxation function, but also to better estimate the elastic modulus.

4. Conclusions

The applicability of fractional viscoelasticity for laminated-glass polymers was investigated in this article.
This approach has both advantages and disadvantages. The main benefit of fractional viscoelasticity is
natural description of the relaxation function using less number of parameters. However, it requires using
a special numerical time integrator, which is not as effective as the standard one. Nevertheless, the use of
fractional approach can be beneficial, especially for the description of the time domain outside the domain
covered by the experiments.
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