
COMPARISON OF APPROACHES TO AIR SPRING HEIGHT CONTROL

Rágulík J.*, Sivčák M.*

Abstract: The paper deals with the comparison of control approaches to the height of the bellows air spring.
These approaches are PI control, a deep reinforcement learning algorithm, and a combination of both control
techniques, the neuro-PI controller. In the case of a neuro-PI controller, it is essentially control by a
reinforcement learning algorithm, but its control neural network contains only two weights that are gained in
the learning process. The advantage of the neuro-PI controller created in this way is that its functionality can
be formally verified in the same way as a classic PI controller. However, such a procedure is only possible
when controlling relatively simple systems, such as the described application for controlling an air spring,
which is a dynamic system with one degree of freedom. All the above approaches are applied to a mathematical
model of an air spring created in the Simulink environment; a deep reinforcement learning algorithm is created
in MATLAB.

Keywords: Deep reinforcement learning, PI control, Formal verification, Deep neural networks,
Air spring.

1. Introduction

Deep reinforcement learning (DRL) is a field of artificial intelligence. It was created by combining the
fields of deep learning and reinforcement learning. Deep learning deals with deep neural networks, which
are artificial neural networks that have several hidden layers. Reinforcement learning (Fig. 1) is an area of
machine learning that looks at how smart agents should act in an environment to maximize the expected
cumulative reward, which is a qualitative description of the actions taken. An agent is usually a control
algorithm and an environment represents a controlled system.

The best-known applications of DRL algorithms include image classification, speech recognition, computer
and classical gaming (Silver et al., 2016), robotics and market prediction applications. In some cases, for
example when playing complex computer games, it is not possible to create a game boot (using classical
programming methods) that would at least approach the level achieved using artificial intelligence
algorithms. The problem arises when applying these algorithms to safety-critical systems. Such a system
is, for example, autonomous vehicles.

The problem occurs with large deep neural networks. Such networks have several layers. Usually an input
layer, several hidden layers and an output layer, where each of these layers can contain hundreds of neurons.
Assuming the use of a fully-connected network architecture, each neuron is connected to all neurons in all
adjacent layers. Networks are even more complex when using image classification. For example, when

* Ing. Jiří Rágulík.: Department of Applied Mechanics, Technical University of Liberec, Studentská 2, 461 17 Liberec.

Czechia, jiri.ragulik@tul.cz
* Ing. Michal Sivčák, PhD.: Department of Applied Mechanics, Technical University of Liberec, Studentská 2, 461 17 Liberec.

Czechia, michal.sivcak@tul.cz

Fig. 1: Reinforcement learning scheme (Sutton and Barto, 1998)

325

27/28th International Conference
ENGINEERING MECHANICS 2022
Milovy, Czech Republic, May 9 –12, 2022
Paper #61, pp. 325–328, doi: 10.21495/512325

 2

navigating a robot through an obstacle environment, it is necessary to determine the appropriate trajectory
of the robot's movement based on the classification of data from the cameras and to act on the motors
accordingly. Image processing usually uses convolutional neural networks, which essentially serve as video
input filters. Several layers of convolutional networks are usually followed by several fully-connected
layers with a high number of neurons in the hidden layers of the network. Such complex networks function
as so-called black-boxes (Ismailov, 2014).

Deep neural networks are trained on a finite set of data and are thus capable of some degree of
generalization. In practice, however, with increasing output quality, there is usually a decrease in the ability
to generalize (Cobbe et al., 2018). An example is the game of chess. Today's algorithms are able to beat
human professional players quite reliably. In the event of a minor change in the rules, such as removing
one of the towers from both players or changing the size of the playing field, the algorithms begin to fail,
while the human player's ability to improvise and make meaningful moves based on game knowledge and
experience can be assumed. Due to the limited generalization capability, the network may respond poorly
to inputs it has never seen before or be too sensitive to input disturbances (Bastani et al., 2016). Thus,
networks can behave unpredictably and give poor results, which is why it is problematic to apply them to
safety-critical systems (Huang et al., 2017).

Formally verifying means mathematically proving the functionality of the program. The program is
practically unverifiable if it is taught on the fly (Katz et al., 2017). However, if a relatively small neural
network is trained first and then it is applied without change, convergence in machine learning algorithms
can be ensured by standard verification procedures (Hull et al., 2002). It is usually necessary to limit the
program at runtime, i.e., to continuously monitor the operation of the program and to check compliance
with the set limits.

2. PI controller tuning and training of neural networks

The mathematical model created in Simulink is in the form of a following differential equation, the
coefficients of which were obtained experimentally on a real spring, where x represents the height of the
spring, F0 the force to reach the free length of the spring and F the excitation force:
 40 ∙ �̈�(𝑡) + 600 ∙ �̇�(𝑡) + 3000 ∙ 𝑥(𝑡) + 𝐹! = 𝐹(𝑡). (1)

Specifically, it is the coefficient of stiffness and damping of the entire pneumatic circuit, consisting of a
spring, pressure regulator and pneumatic hoses. The pressure regulator used has a built-in control circuit of
unknown characteristics and its action in the circuit significantly affects the stiffness and damping of the
system. The state of the system is the height of the spring, the action is a change in pressure inside the
bellows of the spring.

The PID controller was set by the Ziegler-Nicols heuristic method (Ziegler and Nichols, 1942; Haugen et
al., 2013) and applied in the Simulink environment to a mathematical model of a bellows air spring.

The Twin-Delayed DDPG (TD3) algorithm (Fujimoto et al., 2018), a successor to the frequently used Deep
Deterministic Policy Gradient (DDPG) algorithm, was selected from a large family of DRL algorithms
(Lillicrap et al., 2015). Both algorithms fall into the category of actor-critic algorithms, where the agent
consists of two deep neural networks, an actor which, based on the state of the environment, performs
actions on the environment and a critic who adjusts the weights of the actor network based on the suitability
of actions. Unlike DDPG, TD3 uses two critic networks, i.e., two Q-functions, and uses the output of a Q-
function with a lower Q-value to form the targets in the Bellman error loss functions. Another advantage is
that the algorithm updates the actor less often than its Q-functions, represented by critic networks. TD3 is
significantly more stable in the learning process than DDPG and other older algorithms (Fujimoto et al.,
2018). Frequently used hyper-parameter values, learning rate 0.001, discount factor 0.97 and mini-batch
size 512 were used in the learning algorithm process. All neural networks have two hidden layers and the
size of each of these layers is 200 neurons.

After setting up the PID controller by the Ziegler-Nicols method and learning the TD3 algorithm, a neuro-
PI controller was built. It was created using the same already programmed algorithm, but the size of the
actor network was significantly reduced (Fig. 2). The input layer still had two neurons and the output layer
one neuron. No hidden layers were used. Thus, there will be only two weights in the whole actor network,
both input neurons are connected to the output neuron. There are no activating functions in such a reduced
actor, and after learning it is therefore easier to formally verify, because activation functions are one of the

326 Engineering Mechanics 2022, Milovy, Czech Republic, May 9 –12, 2022

 3

Fig. 2: Neuro-PI regulator scheme

main problems in verification, due to its nonlinearity (Katz et al., 2017). The size of the critic networks, the
reward function and all other hyper-parameters were kept the same as in the previous TD3 training. The
inputs to the agent were chosen in the same way as for training with the TD3 deviation algorithm, i.e., the
difference between the required and actual spring height e and the integral of this deviation. The weights in
the neural network, w1 and w2, can thus be considered as the gains of the individual components of the PI
controller. Even in this procedure, the use of the derivative component of the regulator proved to be
unsuitable.

3. PI controller tuning and training of neural networks

The system was excited by the force of the step, sine and saw curves and was additionally loaded with
weights of known weight. The following graph (Fig. 3) shows the achieved control quality. The
mathematical model of the pneumatic spring was excited at time 3 s after stabilization at the required height
by a step change of the loading force from 0 to 400 N. The required height was 115 mm and the free length
of the spring was 112 mm. The working range of the spring used is from 92 mm to 132 mm. The system
was statically loaded with a weight of 40 kg.

The best results were obtained with a neuro-PI controller and a practically identical result was obtained
with a PI controller set by the Ziegler-Nicols method. Only the result of the neuro-PI regulator is shown in
the graph, because it would practically merge with the latter method. For a given controlled system, it was
possible to change the integration gain by up to 10 % without a visible effect on the quality of regulation.
The proportional gains are almost the same and even attempts at small manual tuning have not improved.
It can therefore be said that this is a practically ideal setting of the controller. The amplifications obtained
by both methods are shown in the following table (Tab. 1).

Tab. 1: Gains of PI controllers

Method Proportional gain Kp Integral gain Ki
Ziegler-Nicols 196.7 4.85

Neuro-PI 200.0 4.82

Fig. 3: Air spring height change under load by step change of force during control by both PI
controllers (red) and TD3 algorithm (black)

Rágulík J., Sivčák M. 327

 4

Slightly lower control quality was achieved by the TD3 algorithm. A higher overshoot is noticeable, but
the settling time is similar. The algorithm was trained by force excitation with a time-varying course,
specifically with sine, jump and sawtooth waveforms. The worst results are achieved with the step
excitation waveform, but for the sine and saw waveforms, almost the same control quality is achieved as
with the PI controller. Better results could be achieved by optimizing the hyper-parameters of the algorithm.
However, this is a sufficient quality of regulation so that it is possible to apply the algorithm thus learned
to a real spring and then perform learning on it. Learning on a real spring should bring a significant
improvement over the application of an agent trained only on a mathematical model, because the
mathematical model is not able to accurately describe the behavior of the spring.

4. Conclusions

The paper presents a description and comparison of the results obtained when controlling an air spring with
a PI controller, TD3 algorithm and neuro-PI controller, whose main advantage over the TD3 algorithm is
formal verifiability. The results obtained by PI and neuro-PI regulation were practically identical. The
quality of control achieved using the DRL algorithm is not as high as in previous approaches, but it could
certainly be increased by optimizing the hyper-parameters of the algorithm. However, since the next
research procedure focuses on the application of the algorithm to the real spring and the thus trained agent
will be used at the beginning of the subsequent learning on the real spring, the quality of the regulation is
sufficient. Such pre-learning will significantly reduce the time required for learning.

Acknowledgement

This publication was written at the Technical University of Liberec as part of the project "Research of
advanced materials, and application of machine learning in the area of control and modeling of mechanical
systems" nr. SGS-2022-5072 with the support of the Specific University Research Grant, as provided by
the Ministry of Education, Youth and Sports of the Czech Republic in the year 2022.

References
Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A. and Criminisi, A. (2016). Measuring neural net

robustness with constraints, In NIPS'16: Proceedings of the 30th International Conference on Neural Information
Processing Systems, pp. 2621–2629

Cobbe, K., Klimov, O., Hesse, C., Kim, T. and Schulman, J. (2019) Quantifying Generalization in Reinforcement
Learning. In Proceedings of the 36th International Conference on Machine Learning, PMLR 97, pp. 1282-1289.

Fujimoto, S., Hoof, H. and Meger, D. (2018) Addressing Function Approximation Error in Actor-Critic Methods. In
35th International Conference on Machine Learning, pp. 1582-1591

Haugen, F.A., Lie, B., Haugen, F., Bakke, R. and Lie, B. (2013) Relaxed ZieglerNichols Closed Loop Tuning of PI
Controllers. Modeling, Identification and Control: A Norwegian Research Bulletin. 34. 83-97.

Huang, X., Kwiatkowska, M., Wang, S. and Wu, M. (2017). Safety Verification of Deep Neural Networks. In:
Majumdar, R. and Kunčak, V. (eds) Computer Aided Verification. CAV 2017. Lecture Notes in Computer Science,
vol 10426. Springer, Cham, pp. 3–29. 10.1007/978-3-319-63387-9_1.

Hull, J., Ward, D. and Zakrzewski, R. R. (2002). Verification and validation of neural networks for safety-critical
applications. Proc. of the 2002 American Control Conference, Vol 6. 4789-4794, 10.1109/ACC.2002.1025416.

Ismailov, V. (2014). On the approximation by neural networks with bounded number of neurons in hidden layers.
Journal of Mathematical Analysis and Applications, 417, pp. 963–969. 10.1016/j.jmaa.2014.03.092.

Katz, G., Barrett, C., Dill, D.L., Julian, K. and Kochenderfer, M.J. (2017) Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks. In: Majumdar, R. and Kunčak, V. (eds) Computer Aided Verification. CAV
2017. Lect. Notes in Computer Science, vol 10426. Springer, Cham, pp. 97–117. 10.1007/978-3-319-63387-9_5.

Lillicrap, T., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. and Wierstra, D. (2015). Continuous control
with deep reinforcement learning. 4th International Conference on Learning Representations, ICLR 2016.

Silver, D. et al. (2016) Mastering the game of Go with deep neural networks and tree search, Nature, 529, pp. 484–
489. 10.1038/nature16961.

Sutton, R.S. and Barto, A.G. (1998). Reinforcement Learning: An Introduction. IEEE Transactions on Neural
Networks, 9(5), 1054–1054. https://doi.org/10.1109/tnn.1998.712192

Ziegler, J.B. and Nichols, N.B. (1942) Optimum settings for automatic controllers, Transactions of the ASME, 64, pp.
759–768.

328 Engineering Mechanics 2022, Milovy, Czech Republic, May 9 –12, 2022

