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Abstract: Indirect monitoring of structures is significantly complicated when an artificial vibration absorber
has to be taken into account. Knowledge of the absorber’s behaviour is necessary in order to correctly dis-
tinguish the response types obtained during an drive-by measurement. In this work, the mathematical model
of the ball-type vibration absorber is used, which is based on the Lagrangian formalism. Three first integrals
are identified when no external excitation nor damping is assumed. The paper illustrates the power of this
approach, which enables a detailed analysis of free movement of the ball in the spherical cavity. Properties of
several particular trajectories depending on initial conditions are presented.
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1. Introduction

Contemporary slender and lightweight structures are naturally prone to vibration caused by natural ambient
excitation or traffic induced forces. These structures are often designed to exhibit their slenderness and
installation of the classical pendulum-based absorber is not possible for space, aesthetic, or other reasons.
Various ball-type passive tuned mass absorbers then represent an alternative solution, because they are much
less demanding in terms of a vertical space than conventional pendulum-type devices. This property makes
such absorbers attractive especially for lightweight bridges.

On the other hand, the placement of such a
damping device on the structure makes it dif-
ficult or impossible to indirectly measure the
health of the bridge. These promising indi-
rect measurement methods collect information
on the condition of a structure from a passing ve-
hicle or from a moving impulse load, see (Yang
et al., 2004). The proposed drive-by procedure
can be significantly complicated when the struc-
ture is equipped with an artificial damping de-
vice. The dynamic load acts along the entire
driving path, the excitation intensity of the load
is adjusted so that the response of the dominant
natural mode is maximal. In contrast, the vi-
bration absorbers are designed in such a way
that this particular kind of response is maximally
mitigated. An exact knowledge of the behaviour
of the absorber is thus a necessary (although not
sufficient) condition for correct interpretation of
measured data. However, an effective procedure
for such analysis is still the subject of research. Fig. 1: Outline of the coordinate system
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Basic design guidelines of the ball-type absorber in a linearised 2D analogy and practical implementation
experience was reported on by Pirner and Fischer (2000). A further analysis and stability assessment
based on a non-linear 2D model was published later by the authors, (Náprstek et al., 2013). The complete
governing non-linear differential system derived using the Appell-Gibbs approach was used by the authors
for numerical identification of the auto-parametric resonance effects in (Náprstek and Fischer, 2020a) and
also for the stability analysis (Náprstek and Fischer, 2020b). However, the conducted research was mostly
based on numerical analysis. A novel mathematical model based on the Lagrangian approach is shortly
introduced in this work, which follows the detailed analysis in (Náprstek and Fischer, 2021). When damping
is neglected, three first integrals corresponding to the total energy of the ball can be formulated and exploited
for identification particular states of a free response.

2. Mathematical model

The origin of moving coordinates is located in the center of the moving ball which moves along the concen-
tric the sphere with radius % = R − r. Moving axis p follows a tangent of the concentric sphere meridian
in a vertical plane ξ, z, axis q is always horizontal and axis n follows a normal to the tangential plane in
contact of both bodies being directed upwards, see Fig. 1. The angular velocities with respect to moving-
coordinates axes p, q, n are denoted as ω = (ωp, ωq, ωn)

T and are positive correspondingly with usual
convention. Angles α, γ determine position of the ball center. Translational velocities of the ball center in
moving coordinates are v = [vp, vq, vn]

T .

Basic formulae for kinetic and potential energies with respect to moving coordinates read:

T =
1

2
m
[
v2p + v2q + v2n +

2

5
r2(ω2

p + ω2
q + ω2

n)
]
, (1a)

V = mg%(1− cosα) , (1b)

where m, g represent the mass of the ball and the gravity acceleration, respectively. Because the spherical
cavity has constant curvature 1/%, the projection of the moving coordinates into the cavity is represented
by an orthogonal net. Thus, the relations between angles α, γ and velocities vp, vq read, see Fig. 1:

vp = %α̇, vq = %γ̇ sinα, vn = 0. (2)

The contact conditions of the perfect slipless rolling are given as:

rωq − %α̇ = 0, rωp + %γ̇ sinα = 0. (3)

Then the scaled total energy E0 = T + V , see Eq. (1), can be formulated as follows:

α̇2 + γ̇2 sin2 α+ µω2
n + 2ω2

0(1− cosα) = E, (4)

where
where µ =

2r2

7%2
, ω2

0 =
5g

7%
, E =

10E0

7m%2
.

Finally, three Lagrangian equations for three unknowns α, γ, ωn are derived using the standard procedure
and integrated to form the first integrals (invariants)

α̈− (γ̇2 cosα− µωnγ̇ − ω2
0) sinα =0 , (5a)(

γ̇ sin2 α+ µωn cosα
)
=H , H = 5H0/(7m%

2) , (5b)
(ωn) =S . (5c)

Here S and H0 represent the initial spin of the ball and the angular momentum of the system, respectively.

The behaviour of the sphere can be advantageously described by means of a ”characteristic equation” which
describes the instantaneous height δ of the sphere above the lower pole; δ = 1− cosα.

δ̇2 = (E − µω2
n − 2ω2

0δ)(2δ − δ2)− (H − µωn(1− δ))2 = f(δ) . (6)
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Fig. 2: Basic trajectories for ωn = 0 (no spin),
γ̇0 = γ̇c: solid, γ̇0 = 3/2 γ̇c > γ̇c: bright,
γ̇0 = 1/2 γ̇c < γ̇c: green

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

A

B

C

x

y

Fig. 3: Three trajectory types for ωn 6= 0.
ωn < 0: green, ωn > 0: bright color. A: high value
of spin, B: critical spin, C: low value of spin.

The cubic parabola f(δ) is physically meaningful only for values where f(δ) > 0, as δ̇ should be real.
Also, it can be shown that three roots δi, i = 1, 2, 3 of f(δ) are such as

0 ≤ δ1 ≤ δ2 < 2 < δ3 and f(δ) > 0 for δ1 ≤ δ ≤ δ2 ∨ δ ≥ δ2. (7)

Values δ1,2 represent a lower and upper limit of the trajectory of the sphere in the cavity. For geometrical
reasons, only values 0 ≤ δ1,2 ≤ 2 can be considered. The zero and the coinciding roots can occur. They
represent important cases and serve as certain limits between individual response types.

3. Selected response trajectories

Because no external excitation is assumed, particular trajectories are defined by an initial position of the
ball and its initial velocity.

The circular trajectory, when the ball moves in a horizontal plane around the spherical cavity, is character-
ized by the condition δ1 = δ2. An easier derivation than the one based on Eq. (6) uses the assumption of
constant deviation α(t) = αc and constant angular speed γ̇(t) = γ̇c. Putting α̈ = 0 in Eq. (5a):

0 = γ̇2c cosαc − µγ̇cωn − ω2
0 , (8)

provides the relation for unknown initial speed γ̇c in dependence on initial deviation αc :

γ̇c =
µωn ±

√
4ω2

0 cosαc + µ2ω2
n

2 cosαc
. (9)

If there is no initial spin of the ball, ωn = 0, initial speed γ̇0 > γ̇c defines movement of the ball in waves
above the original circular trajectory, Fig. 2, long dashes. Vice versa, for initial speed γ̇0 < γ̇c the ball
circulates below the limiting circle, see the green dashed line in Fig. 2.

Equation (8) enables to determine a correcting value of spin for an arbitrary initial speed γ̇0 (different from
γ̇c) so that the resulting trajectory remains circular:

ωn =
γ̇20 cosαc − ω2

0

µγ̇0
. (10)

A general influence of the spin velocity on the circular trajectory is shown in Fig. 3. The segments of
trajectories originating in point A belong to a high value of negative (green, long dashed curve) and positive
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(bright, dashed curve) spin. The segments for low positive/negative values of spin begin in point C. The
curves are distinctive by the absence of curls for a negative spin or by the loops circling the origin when the
spin is positive. The limit between these two types is shown as segments originating in point B, which pass
through the origin (positive) or possess sharp spikes (negative). For the negative spin is the limiting value
identified by the existence of an infinite curvature of the trajectory at spikes. This condition gives rise to the
following formula:

ωn = − 7γ̇0ω
2
0(R− r)2 sin2 αc

r2
(
γ̇20 sin

2 αc − 2ω2
0 cosαc

) . (11)

For the positive spin, the limit trajectory passes through the origin and is characterised by the initial condi-
tions:

ωn =
7γ̇0(R− r)2 (cosαc + 1)

2r2
. (12)

Existence of curls is determined by vanishing speed γ̇. This corresponds to points where the tangent to the
trajectory directs towards the origin. The α coordinate of such points is given as follows:

αt = cos−1

(
cosαc +

7γ̇0(R− r)2 sin2 αc

2r2ωn

)
. (13)

It is obvious that the argument of the inverse cosine in Eq. (13) has to fit its domain of definition. This
condition, applied to ωn, gives another way to the condition in Eq. (12).

4. Conclusions

The ball-type passive tuned mass vibration absorbers are popular damping devices which proved high ef-
ficiency in suppressing unwanted movement of slender structures exposed to wind excitation. Because its
structural damping is low, the device is prone to a stability loss. For the same reason is the neglect of
damping in the used mathematical model justifiable. Based on a fully 3D model, selected trajectories of a
ball which freely moves in a spherical cavity were presented together with relations which specify the cor-
responding initial conditions. Appearance of such types of spatial behaviour in a real device may represent
a danger for safety of the structure and, thus, adequate countermeasures has to be applied.

It also appears that shapes of complex trajectories of the ball within the cavity make a possible usage of
indirect measuring techniques problematic. The analysis of the obtained data is significantly more com-
plicated than it is in the case when the examined structures are not equipped with vibration absorbers. In
addition, targeted excitation of the response in the first resonant mode may excite the absorber in an unde-
sirable manner. In any case, solid knowledge of the behaviour of a possible absorber is a necessary step in
developing an identification procedure.
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