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Abstract: This paper deals with fast flow field prediction in a blade cascade using a machine-learning archi-
tecture called a convolutional neural network. Specifically, our work focuses on the U-Net architecture. With
the following study, our goal is to parameterize the neural network architecture, in dependence on Reynolds
and Mach numbers. The hyper network in our model is a simple fully-connected feedforward neural network
generating weights, which fit the U-net architecture with the specific Mach and Reynolds number. The concept
of the hyper network-based parametrization is tested on the problem of a compressible fluid flow through the
blade cascade.
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1. Introduction

Convolution neural network (CNN) is a class of neural networks developed mainly for image processing.
The common use of CNN lies in objects classification or image segmentation. The pioneering use of the
CNN for the steady fluid flow simulation was published by Guo (2016), where the input image, which
contains the boundary information, was transformed to the velocity field. The use of CNN for the unsteady
fluid flow simulation was firstly described by Hennig (2017). In both papers, the U-net architecture of CNN
was used, see Fig. 3.

This work aims to use U-net based neural network model for the flow field prediction through blade cascade
and establishes the lift and drag forces acting on the blade. The high performance and differentiability of
a neural network yield a very promising alternative to classical CFD methods for tough problems such as
flow control or shape optimization. This means in tasks where a pressure field calculation is required for
many geometry variations.

To provide a parameter-dependent neural network model predicting the flow field for different Reynolds
and Mach numbers, the concept of a hyper network is employed. The idea of the hyper network is, that
when we modify the Reynolds or the Mach number, the hyper network modifies the main network in such
a way that it produces flow fields that correspond to that Reynolds and Mach number. In our model, the
hyper network is a simple fully-connected feedforward neural network with one hidden layer, see Fig. 4.
Hypernetworks can therefore be thought of as weight generators.

The neural network architecture was implemented using Python programming language with the help of
Keras (Chollet, 2015) and TensorFlow (Tensorflow, 2015) libraries.
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2. Geometry of blade cascade and training set

The geometry of the blade cascade consists of a blade profile whose body is formed by a bezier curve with
six control points, see Fig 1. The computational domain covered by a computational mesh is shown in Fig
2. The inlet and outlet boundary is considered on the left and right vertical sides of a domain. On the top
and the bottom sides of the domain, the periodic boundary conditions are considered. The training set of
50 random profiles was generated. Each of the profile was trained for all combinations of chosen Mach
numbers, Ma = 0.2, 0.5, 0.9 and Reynolds numbers, Re = 100, 1000, 10000. The numerical computation of
the specimens was performed with open-source CFD software FlowPro (Bublik, 2000).

Fig. 1: Blade profile. Fig. 2: Computational mesh.

The evaluation of the lift and drag forces acting on the blade is performed using the relations

L =

∮
Γ
pny , D =

∮
Γ
pnx , (1)

where L and D are lift and drag forces, p is a pressure field, n = [nx, ny]T is a unit normal vector and Γ is
a profile surface.

3. Neural network architectures

For the prediction of the flow field, the U-net architecture of CNN was employed. The x and y coordinates
of the structured mesh with 64 x 32 points is considered as U-net input, see Figs. 2 and 3 (black colored
mesh in the middle). At the output of the U-net, the flow field included density, pressure and velocity is
generated. The U-net based model was trained for 50 blade profiles and for each of the Reynolds and Mach
numbers combinations. The resulting weights were then used for training the hypernetwork.

Fig. 3: U-net architecture of convolution neural network predicting flow field.

The hypernetwork consists of a dense neural network, see Fig. 4. At the input, the Reynolds and Mach
numbers are supplied. The weights of the U-net are then generated at the output of the hypernetwork.
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Tab. 1: Average error across all
Mach and Reynolds numbers.

test blade drag error [ % ] lift error [ % ]

1 5,99 5,87

2 1,31 0,75

3 4,62 5,02

4 2,45 3,76

5 5,05 3,73

Fig. 4: Hypernetwork architecture. The input
Reynolds and Mach numbers are transformed
onto the U-net weights.

4. Numerical results

The concept of the flow field parametrization has been evaluated on the set of 5 testing blade profiles, which
were not included in the training set.

Firstly, the weights of the U-net CNN were generated for the chosen Reynolds and Mach numbers using
the hypernetwork. The U-net based model was used afterwards for the flow field predictions.

Figure 5 shows a comparison of predicted flow field for Mach number 0.9 and Reynolds number 100 for
the first test profile. Further, Fig. 6 illustrates the computed and predicted flow field for Mach number 0.5
and Reynolds number 1000 around the second test profile. The Tab. 1 contains the average relative error
for each of the test profiles.

Fig. 5: Comparison of predicted (left) and computed (middle) flow field for Mach number 0.9 and Reynolds
number 100, for the test profile 1. Pressure plot along the profile (right).
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Fig. 6: Comparison of predicted (left) and computed (middle) flow field for Mach number 0.5 and Reynolds
number 1000, for the test profile 2. Pressure plot along the profile (right).

5. Conclusions

Within this study, the concept of flow field parametrization through the hypernetwork was introduced. The
hypernetwork was trained for all of the combinations of three Reynold numbers (100, 1000, 10000) and
three Mach numbers (0.2, 0.5, 0.9). The U-net based model with weights generated by the hypernetwork
was evaluated for five test profiles. The Tab. 1 contains average errors between computed and predicted
values. All of the average errors are less than six percent. The results indicate that the concept of the flow
field parametrization by the hypernetwork could be a very promising alternative to classical CFD methods
for tough problems such as flow control or shape optimization. The future studies will be focused on a fully
parametrized flow field.
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