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Abstract: This contribution develops an efficient formulation for the topology optimization of frame structures 

with fixed-aspect-ratio cross-sections, solvable to global optimality by the moment-sum-of-squares hierarchy. 

While the hierarchy generates a sequence of non-decreasing lower-bounds, we develop a sequence of feasible 

upper-bounds, allowing to assess the optimized design quality in each relaxation. Finally, these bounds provide 

a means of establishing a new sufficiency condition of global ε-optimality. 
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1. Introduction 

The design of frame structures constitutes one of the oldest applications in structural optimization. 

Assuming the ground structure approach (Dorn et al., 1964), in which the position of structural nodes 

and their connectivity are fixed in advance, two main branches can be distinguished: (i) optimizing discrete, 

or (ii) continuous cross-sectional properties of individual finite elements. In the discrete case, the problem 

exhibits a combinatorial nature, and thus the branch-and-bound method may be adopted to compute 

the guaranteed globally optimal solutions (Kanno, 2016), albeit with large computational expenses. For the 

continuous case a non-convex formulation is known only, and thus local optimization approaches are used. 

To the authors’ knowledge, no method has been developed so far that allows for obtaining a guaranteed 

global optimum in the continuous setting. 

In this contribution, we exploit the polynomial structure of the optimization problem, i.e., the objective 

function as well as the constraints are in fact low-degree polynomials and form a semi-algebraic set. 

Therefore, we can adopt the moment-sum-of-squares hierarchy (Lasserre, 2001) for the problem solution. 

Moreover, it will be shown that each relaxation of the moment-sum-of-squares hierarchy generates both 

lower- and upper-bound to the objective function, a measure of the actual design quality. Finally, based 

on these bounds we develop a new simple sufficiency condition of global ε-optimality. 

2. Semidefinite programming formulation 

Assuming a continuum design space discretized using ne Euler-Bernoulli frame elements with given-shape 

fixed-aspect-ratio cross-sections, we search their sizes a to maximize the structural stiffness against 

specified loads f(a). The structural stiffness is measured (inversely) using the compliance c, work done by 

external forces. Then, the optimization problem can be posed as a non-linear (non-convex) semi-definite  

program 

  (1a) 
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 s. t.  (
𝑐 −𝐟(𝐚)T

−𝐟(𝐚) 𝐊(𝐚)
) ≽ 𝟎,                              (1b) 

        𝓵T𝐚 ≤ 𝑉, (1c) 

             𝐚 ≥ 𝟎, (1d) 

in which K(a) denotes the structural stiffness matrix, 𝓵 is the frame elements lengths column vector, 

𝑉constitutes a prescribed volume upper bound, and the notation “≽ 0” requires positive semidefiniteness 

of the left-hand-side matrix. 

3. Polynomial optimization 

3.1. Efficient formulation 

In the optimization problem (1), the objective function (1a) and the constraints (1c) with (1d) are all 

polynomials of degree one. Moreover, the matrix inequality (1b) contains polynomial entries of the 

maximum degree two, and forms thus a semi-algebraic set. Consequently, polynomial optimization 

techniques are suitable for a solution of (1). In the following text we restrict ourselves to the moment-sum-

of-squares hierarchy of Lasserre (2001). 

Before proceeding, we reformulate the problem (1) slightly to improve the optimization performance. First, 

to satisfy the assumptions of the celebrated Putinar’s Positivstellensatz (Putinar, P1993), we bound the 

design variables of (1) both from below and above. In the case of the cross-sectional areas, the lower bound 

is set already, and the upper bound can be established from the volume constraint (1c), i.e., 

 0 ≤ 𝑎𝑖 ≤
𝑉

ℓ𝑖
,   ∀𝑖 ∈ {1, … , 𝑛e}. (2) 

In the case of the compliance variable c, neither of the bounds is set explicitly yet. However, the zero lower 

bound comes from the definition of the compliance functional, and the upper bound is established by any 

feasible solution to (1). Indeed, one of these is the uniform distribution of the cross-sectional areas 

 0 ≤ 𝑐 ≤ 𝐟(�̅�)T𝐊(�̅�)−1𝐟(�̅�),   𝑤ℎ𝑒𝑟𝑒 �̅� =
𝑉

𝟏𝑻𝓵
𝟏. (3) 

Having constrained the bounds of the design variables, the design space is clearly bounded and closed, 

hence compact. We further rescale the domain of the design variables to [−1,1], which considerably reduces 

numerical issues that may arise during the solution: 

 𝑎𝑖 = 0.5𝑉(𝑎sc,𝑖 + 1)/ℓ𝑖,   ∀𝑖 ∈ {1, … , 𝑛e}, (4a) 

 𝑐 = 0.5𝐟(�̅�)T𝐊(�̅�)−1𝐟(�̅�)(𝑐sc + 1),            (4b) 

where 𝐚sc and 𝑐sc denote the scaled cross-sectional areas and compliance, respectively. Finally, the box 

constraints are replaced by the second-order polynomials 

  1 − 𝑎sc,𝑖
2 ≥ 0,   ∀𝑖 ∈ {1, … , 𝑛e}, (5a) 

 1 − 𝑐sc
2 ≥ 0,                              (5b) 

consequently reducing the number of constraints. Although this step might seem counter-intuitive, slightly 

complicating the problem structure as box constraints are easier to handle, the constraints (5) are tighter 

in the moment representation of the problem. To see this, assume that (𝑦0, 𝑦1, 𝑦2) are the moments 

associated with the canonical basis of the vector space of polynomials of the degree at most two, 

(1, 𝑎sc,𝑖 , 𝑎sc,𝑖
2 ) for some 𝑖 ∈ {1, . . , 𝑛e}. The same procedure can be applied, however, for all the variables 

𝐚sc and 𝑐sc. Then, in the first relaxation of the moment-sum-of-squares hierarchy, while Eq. (5a) becomes 

 𝑦0 − 𝑦2 ≥ 0 (6) 

the box constraint −1 ≤ 𝑎sc,𝑖 ≤ 1 yields 

 −𝑦0 ≤ 𝑦1 ≤ 𝑦0, (7) 
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with 𝑦0 = 1. Moreover, the moment matrix of the entire optimization problem contains the principal 

submatrix 

 (
𝑦0 𝑦1

𝑦1 𝑦2
) ≽ 0 (8) 

that must be positive semi-definite as the entire moment matrix is. 

For the quadratic constraint (5a), 𝑦2 ≤ 1 from Eq. (6) and 𝑦2 ≥ 0 because of Eq. (8). Writing 

the determinant of (8) then provides us with 𝑦0𝑦2 ≥ 𝑦1
2. Consequently, we observe that 0 ≤ 𝑦1

2 ≤ 𝑦2 ≤ 1, 

so that the first-order moment 𝑦1 always satisfies (5a). Moreover, 𝑦2 is upper-bounded by 1. 

In the case of the box constraints, however, we only have 0 ≤ 𝑦1
2 ≤ 1, Eq. (7), and 𝑦1

2 ≤ 𝑦2, Eq. (8). Note 

that there is no upper bound for 𝑦2, which can attain arbitrarily large values in the first relaxation. From the 

mechanical point of view, this implies an arbitrarily-large rotational stiffness of the elements. 

Combining these observations together, the final formulation reads 

 min
𝐚sc,𝑐sc

0.5𝐟(�̅�)T𝐊(�̅�)−1𝐟(�̅�)(𝑐sc + 1),                                                                     (9a) 

 s. t.  (
0.5𝐟(�̅�)T𝐊(�̅�)−1𝐟(�̅�)(𝑐sc + 1) −𝐟(𝐚sc)T

−𝐟(𝐚sc) 𝐊(𝐚sc)
) ≽ 𝟎,                              (9b) 

                    2 − 𝑛e − 𝟏T𝐚sc ≥ 0, (9c) 

                                                                 1 − 𝑎sc,𝑖
2 ≥ 0,   ∀𝑖 ∈ {1, … , 𝑛e}, (9d) 

                                    1 − 𝑐sc
2 ≥ 0. (9e) 

3.2. Solution process 

Let 𝐱 =  (𝐚sc, 𝑐sc) be the vector of the design variables, and let 𝑝𝑗 , 𝑗 ∈ {0, … , 𝑛e + 2}, denote 

the polynomials in (9a), (9c), (9d) and (9e). Moreover, let 𝑃𝑛e+3 stand for the polynomial matrix inequality 

(9b). The canonical basis associated with the vector space of polynomials of the degree at most d reads as 

   𝐛𝑑(𝐱) = (1, 𝑥1, 𝑥2, … , 𝑥𝑛e+1, 𝑥1
2, 𝑥1𝑥2, … , 𝑥1𝑥𝑛e+1, 𝑥2

2, 𝑥2𝑥3, 𝑥𝑛e+1
2 , … , 𝑥1

𝑑 , … , 𝑥𝑛e+1
𝑑 ). (10) 

Then, each of the polynomials 𝑝𝑗 can be expressed as a linear combination of the monomials, 

 𝑝𝑗(𝐱) = ∑ 𝑝c,𝑗,𝛽𝐱𝛂𝛽
|𝐛𝑑(𝐱)|
𝛽=1 ,   where 𝐱𝛂𝛽 = ∏ 𝑥𝑚

𝛼𝛽,𝑚𝑛e+1
𝑚=1 ,  (11) 

which are associated with the polynomial vector space basis 𝐛𝑑(𝐱). In Eq. (11), 𝑝c,𝑗,𝛽 is the coefficient 

of the linear combination associated with the j-th polynomial 𝑝𝑗 and with the β entry in 𝒃𝑑(𝐱), and 𝛂𝛽 is the 

multi-index vector whose entries 𝛂𝛽,𝑚, 𝑚 ∈ {1, … , 𝑛e + 1}, are non-negative integers associated with the 

entries in 𝐛𝑑(𝐱). Therefore, ∑ 𝛂𝛽,𝑚
𝑛e+1
𝑚=1 ≤ 𝑑. 

In addition, let y denote the moments corresponding to the monomials in the basis 𝐛𝑑(𝐱). Then, we build 

the moment-sum-of-squares hierarchy of convex outer approximations as 

 min
𝐲

 ∑ 𝑝c,0,𝛽𝑦𝛽
|𝐛𝑑(𝐱)|
𝛽=1 ,                                               (12a) 

 s. t.                   𝐌𝑑(𝐲) ≽ 0,                                    (12b) 

                          𝐌𝑑−𝑣𝑗
(𝐲) ≽ 0,   ∀𝑗 ∈ {1, … , 𝑛e + 3}, (12c) 

which are solved successively with an increasing relaxation order 𝑑 ∈ ℕ. In (12), the matrix 𝐌𝑑(𝐲) is the 

moment matrix of the d-th order, and 𝐌𝑑−𝑣𝑗
 is the (𝑑 − 𝑣𝑗)-th order localizing matrix associated with 𝑝𝑗 

or 𝑃𝑗, and 𝑣𝑗 is one half of the degree of 𝑝𝑗 or 𝑃𝑗. For more details about these matrices, we refer the reader 

to (Lasserre, 2001; Henrion and Lasserre, 2006). 

The hierarchy of convex linear semidefinite programs (12) possesses a monotonous convergence, making 

the outer approximations tighter with increasing d and providing non-decreasing lower-bounds on the 

globally optimal solution. 
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3.3. Bounds on the global optimum 

Let 𝐲𝑑
∗  denote the optimal solution of the d-th order relaxation of (12). Then, the objective function value 

is a lower-bound to the globally optimal compliance 𝑐∗, 

 𝑐 ≔  0.5𝐟(�̅�)T𝐊(�̅�)−1𝐟(�̅�)(𝑦c
∗(1)

+ 1) ≤ 𝑐∗,  (13) 

where 𝑦c
∗(1)

 stands for the first-order moment associated with 𝑐sc in 𝐲𝑑
∗ . In addition, let 𝐲a

∗(1)
 denote the 

first-order moments associated with 𝐚sc extracted from 𝐲𝑑
∗ . Putting (𝐚sc, 𝑐sc) = (𝐲a

∗(1)
, 𝑦c

∗(1)
) into (9), Eq. 

(9c) is clearly satisfied, together with (9d) and (9e) as is shown in Section 3.1. On the contrary, the non-

convex constraint (9b) may be violated. To satisfy (9b) it is sufficient to increase the compliance, so that 

the structural equilibrium holds. Indeed, using the (generalized) Schur complement lemma, e.g., (Gallier, 

2011, Theorem 16.1), on (9d), we have 

 𝑐 = 𝐟(𝐲a
∗(1)

)
T

𝐊(𝐲a
∗(1)

)
†

𝐟(𝐲a
∗(1)

), (14) 

with (•)† denoting the Moore-Penrose pseudo-inverse of •, which makes the problem (9) feasible while 

increasing the objective function to the upper-bound value 𝑐. Note that (14) basically evaluates 

the structural compliance using the finite-element analysis. 

Consequently, we have 𝑐 ≤ 𝑐∗ ≤ 𝑐 in each of the relaxation of the hierarchy (12). Moreover, as 𝑐 − 𝑐 → 0 

we approach the global optimum and 

 𝐟(𝐲a
∗(1)

)
T

𝐊(𝐲a
∗(1)

)
†

𝐟(𝐲a
∗(1)

) − 0.5𝐟(�̅�)T𝐊(�̅�)−1𝐟(�̅�)(𝑦c
∗(1)

+ 1) < 𝜀 (15) 

is a sufficient condition of global ε-optimality. Notice that this optimality condition is much easier to check 

than the traditional one (Curto and Fialkow, 2000) which relies on the more expensive rank computation. 

4.  Conclusions 

This contribution develops an efficient formulation for topology optimization of frame structures with fixed 

aspect-ratio cross-sections. Because the feasible space of the formulation forms a semi-algebraic set, 

the problem admits a solution by the moment-sum-of-squares hierarchy. Moreover, while the hierarchy 

generates a sequence of non-decreasing lower bounds, a sequence of upper bounds can be established 

by computing the structural compliance with the cross-sectional areas defined by the corresponding first-

order moments. Using these bounds, a simple sufficient condition of ε-optimality is established, eliminating 

the need for the traditional rank-based computations. 
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