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Abstract: In the paper, the description of a heat transfer process proceeding in a one-dimensional, non-

homogeneous biological tissue domain is presented. The paper concerns imprecisely defined transient 

bio-heat transfer problems, when in the mathematical model the uncertain parameters are defined and 

treated as interval numbers. The base of mathematical model is given by the Pennes interval set of equations 

supplemented by the adequate boundary-initial conditions. The problem discussed is solved with the use 

of the interval version of the finite difference method applying classical and directed interval arithmetic 

rules. In the final part of the paper the examples of numerical simulations are shown, in particular 

the comparison of both types of interval arithmetic. 

Keywords:  Bio-heat transfer, Interval finite difference method, Interval numbers, Directed interval 

arithmetic, Classical interval arithmetic. 

1. Introduction 

Thermophysical parameters of biological tissue such as thermal conductivity, volumetric specific heat and 

perfusion coefficient are individual personal traits and this fact suggests the application of interval 

arithmetic methods at the stage of numerical modelling of the skin tissue heating process. In the paper 

the bio-heat transfer proceeding in a one-dimensional skin tissue domain with the interval thermophysical 

parameters occurring in the mathematical model is considered.  

The solution of the presented problem has been obtained with the use of interval finite difference method 

and the rules of classical and directed arithmetic. The main advantage of the directed interval arithmetic 

upon the usual interval arithmetic is that the obtained temperature intervals are much narrower and their 

width does not increase over time (Markov, 1995). In the final part of the paper the examples 

of numerical computations are presented.  

2. Interval governing equations 

The heat transfer proceeding in the heterogeneous skin tissue domain can be described by the system 

of interval equations (Mochnacki, 2013 and Mochnacki, 2016) 
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where e = 1, 2, 3 corresponds to the successive layers of skin such as epidermis, dermis, hypodermis, �̄�𝑒 is 

the interval volumetric specific heat, �̄�𝑒 is the interval thermal conductivity, �̄�𝑒 is the capacity of fuzzy 

internal heat sources, Te is the temperature, x and t denote spatial co-ordinate and time.  

The capacity of interval internal heat sources is a sum of two components 
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where GBe is the perfusion coefficient, cB is the volumetric specific heat of blood, TB is the arterial blood 

temperature and �̄�𝑚𝑒 is the interval metabolic heat source. 

The interval equations (1) must be supplemented by the boundary-initial conditions 
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where �̄�𝑏 is the given interval external heat source, T0 is the initial temperature. Between the successive 

sub-domains the continuity condition is taken into account (Mochnacki, 2013). 

2.1. The interval finite difference method  

The interval finite difference method with the rules of directed and classical interval arithmetic is applied 

(Mochnacki, 2013 and Mochnacki, 2016). The time grid with a constant step ∆t = t f – t f–1 and 

the geometrical mesh have been introduced.  

The left-hand side of the energy equations (1) for the time ft  can be substituted by a differential quotient 

 

1 1
1( , ) ( ) ( )

( )

f f f
fe e i e i

e e i

i

T x t T T
c c

t t

 
  

 
  

 (4) 

while the right-hand side of the energy equations (1) can be transformed using the following formula 
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where ∆xe is the mesh step, �̄�𝑒 is the temperature interval and i is the index of the central point of star 

(Mochnacki, 1995). 

The following interval differential equations are obtained 
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The system of equations (6) has been solved using the rules of interval arithmetic (classical and directed) 

and the assumption of the stability condition for explicit differential scheme. 

2.2. The interval arithmetic  

As first the definition of the classical interval number is introduced. Let us consider an interval a  which 

can be defined as �̄� = [𝑎−,  𝑎+]: = {𝑎 ∈ 𝐑|𝑎− ≤ 𝑎 ≤ 𝑎+}, where a –, a + denote the beginning and the end 

of the interval, respectively (Neumaier, 1990 and Piasecka-Belkhayat, 2008). In the set of classical 

interval numbers the basic mathematical operations for �̄�, �̄� ∈ 𝐑 can be defined as follows  

 ,a b a b a b          (7) 

 ,a b a b a b          (8) 

 [min( , , , ), max( , , , )]a b a b a b a b a b a b a b a b a b                          (9) 
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 / 1 , 0a b a b b    (10) 

Let us consider a directed interval number d  which can be defined as a set D of all directed pairs of real 

numbers �̄� = [𝑑−, 𝑑+]: = {𝑑 ∈ 𝐃|𝑑− ≤ 𝑑 ≤ 𝑑+}, where d –, d + denote the beginning and the end 

of the interval, respectively (Markov, 1995 and Piasecka-Belkhayat, 2011). In the set of directed interval 

numbers two binary variables are defined. The first of them is the direction variable 
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and the other is the sign variable 
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where 𝐙 = 𝐙𝐏 ∪ 𝐙𝐈 ∈ 𝐃 while 𝐙𝐏 = {�̄� ∈ 𝐏|𝑑− ≤ 0 ≤ 𝑑+}, 𝐙𝐈 = {�̄� ∈ 𝐈|𝑑+ ≤ 0 ≤ 𝑑−} and P denotes 

a set of all directed proper intervals (d – ≤ d +), I  denotes a set of all improper intervals (d – ≥ d +). 

This way the rules of the directed interval arithmetic are not the same as the rules of the classical interval 

arithmetic. This arithmetic is more complicated, but more useful because in the set of the directed interval 

numbers it is possible to obtain the number zero by subtraction of two identical intervals  

 , 0d d d d d d           (13) 

and the number one as the result of the division of two identical intervals 
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which was impossible when applying classical interval arithmetic (Popova, 2001). 

3.  Results of computations 

As a numerical example the bio-heat transfer in a skin tissue of thickness L3 = 12.1 mm has been analyzed. 

The following input data have been introduced: L1 = 0.1 mm, L2 = 2.1 mm, λ1 = 0.235 W/(mK), 

λ2 = 0.445 W/(mK), λ3 = 0.185 W/(mK), c1 = 4.3068·106 J/(m3K), c2 = 3.96·106 J/(m3K), 

c3 = 2.674·106 J/(m3K), cB = 3.9962106 J/(m3K), Qm1 = 0, Qm2 = Qm3 =  245 W/m3, TB = 37 C, GB1 = 0, 

GB2 = GB3 = 0.00125 (m3
blood/s)/m3

tissue, initial temperature T10 = T20 = T30 = 37C, the external heat source 

qb = 20·103 W/m2 , the time step ∆t = 0.001 s, the mesh step ∆xe = (Le – Le –1 ) / ne where n1 = 5, n2 = 30 

and n3 = 60. The time of external heat source exposition has been assumed as 5 s.  

 

    Fig. 1: Heating and cooling curves – classical interval arithmetic. 
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Fig. 1 presents the courses of the interval temperature functions at the selected internal nodes  

L1 (1), L2 (2) for interval values c̄𝑒= [ce – 0.05 ce, ce + 0.05 ce], λ̄𝑒= [λe – 0.05 λe, λe + 0.05 λe] and  

Q̄𝑚𝑒= [Qme – 0.05 Qme, Qme + 0.05 Qme] applying the classical interval arithmetic. 

Fig. 2 shows the courses of the interval temperature functions at the same nodes and for the same values 

of interval thermophysical parameters with the use of the rules of directed interval arithmetic. 

  

Fig. 2: Heating and cooling curves – directed interval arithmetic. 

4. Conclusions 

This paper presents the modelling of heat transfer in skin tissue using the interval finite difference 

method. The obtained temperatures were compared through applying directed and classical interval 

arithmetic. Using the rules of interval arithmetic allows to adapt imprecisely defined thermal parameters 

and due to this the temperatures are received as intervals. The temperatures calculated using the classical 

arithmetic are relatively wide and their width increases over time. On the other hand, the results attained 

with the directed arithmetic are much narrower and the difference between obtained temperatures does 

not rise over time. 
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