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Abstract: In the paper, we present a direct inverse mass matrix in the higher-order finite element method 

for solid mechanics. The direct inverse mass matrix is sparse, has the same structure as the consistent mass 

matrix and preserves the total mass. The core of derivation of the semi-discrete mixed form is based on the 

Hamilton’s principle of least action. The cardinal issue is finding the relationship between discretized 

velocities and discretized linear momentum. Finally, the simple formula for the direct inverse mass matrix is 

presented as well as the choice of density-weighted dual shape functions for linear momentum with respect to 

the displacement shape function with a choice of the lumping mass method for obtaining the correct and 

positive definitive velocity-linear momentum operator. The application of Dirichlet boundary conditions into 

the direct inverse mass matrix for a floating system is achieved using the projection operator. The suggested 

methodology is tested on a free-vibration problem of heterogeneous bar for different orders of shape functions.  

Keywords:  Higher-order Finite element method, Direct inverse mass matrix, Consistent and lumped 

mass matrix, Free vibration problem, Heterogeneous bar. 

1. Introduction 

The direct inversion of consistent-like mass matrix is a promising tool for accurate and efficient modeling 

in dynamic problems of solids based on the finite element method. It is known that the inversion of the 

consistent mass matrix in the finite element method is fully filled, therefore the sparse variant obtained by 

the direct assembling is desirable. The direct inverse mass matrix can be looked at as a good approximation 

of the classical inversion of the mass matrix that has a favorable frequency spectrum and is preserving the 

total mass of bodies. 

The penalized three-field formulation for the direct inverse (reciprocal) mass matrix (RMM) has been 

derived in work (Tkachuk and Bischoff, 2015). This approach uses the dual shape functions including the 

Dirichlet boundary conditions. The direct inverse mass matrix has been revised and re-derived for a floating 

system, subsequently, with the application of the Dirichlet boundary conditions via a projection operator 

for the linear finite element method (González et al., 2018) and for the isogeometric analysis (González et 

al., 2019). The application of the Dirichlet boundary conditions is based on the localized Lagrange 

multipliers (Park et al., 2000). In this contribution, we present the extension of the mentioned approach for 

the higher-order finite element method with a suitable mass lumping and its application into free vibration 

problems. 
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2. Direct inversion of mass matrix in finite element method 

In this section, we present the theoretical description of a strong and weak form of constrained elasto-

dynamics and the formula for the direct inverse mass matrix. 

2.1. Strong form and Hamilton’s principle for constrained elastodynamics 

Let 𝛺 ⊂  𝑅3, be an open, bounded domain with a piecewise smooth boundary 𝛤 = 𝜕𝛺. The strong 

formulation of dynamic problem for a body occupying the domain with the boundary 𝛤 is formulated as 

 𝑑𝑖𝑣 𝝈 + 𝒃 = �̇�𝑜𝑛  𝛺 × [0, 𝑇]  (1) 

 𝒖 = 𝒖𝑏𝑜𝑛  𝛤𝑏  × [0, 𝑇] (2) 

 𝝈 ∙  𝒏 = 𝒕𝑜𝑛  𝛤𝑡  × [0, 𝑇] (3) 

 𝒖|𝑡=0 = 𝒖0, �̇�|𝑡=0 = �̇�0 𝑖𝑛  𝛺 (4) 

where 𝝈 is the Cauchy stress tensor,  𝒃  is the volume force per volume, the linear momentum 𝒑 is connected 

to the velocity field �̇� and the mass density 𝜌 as  𝒑 = 𝜌 �̇�, 𝒖 is the displacement field, 𝒖𝑏 is the prescribed 

displacement on 𝛤𝑏 (Dirichlet boundary conditions), 𝒏 is the outward normal defined on 𝛤, 𝒕 is the traction 

vector defined on 𝛤𝑡 (Neumann boundary conditions), 𝒖0 a �̇�0 are the initial conditions for displacement 

and velocity fields. We assume a linear elastic constitutive relationship via the Hooke’s law 𝝈 = 𝑫 𝝐, where 

𝑫 is the fourth-order elastic tensor, 𝝐 is the small infinitesimal strain tensor defined as the symmetrical part 

of the displacement gradient 𝜺 = 𝑠𝑦𝑚 (𝑔𝑟𝑎𝑑 𝒖). 

The strong form defined in Eqs. (1) - (4) can be reformulated in the sense of the Hamilton’s principle of 

least action in the mixed variational form as follows (González et al., 2018) 

𝛿𝐻(𝒖, 𝒑, 𝒍) = ∫ {∫ 𝛿𝒑 ∙ (�̇� −
1

𝜌
 𝒑)  𝑑𝛺

𝛺
+ ∫ (𝛿𝒖 ∙ �̇� + 𝛿𝜺: 𝝈) 𝑑𝛺

𝛺
+ ∫ 𝛿𝒖 ∙ 𝒃 𝑑𝛺

𝛺
+ ∫ 𝛿𝒖 ∙ 𝒍 𝑑𝛤

𝛤𝑏
+

𝑡2

𝑡1

∫ 𝛿𝒍 ∙ (𝒖 − 𝒖𝑏) 𝑑𝛤
𝛤𝑏

} 𝑑𝑡 = 0  (5) 

where 𝒍 is the field of Lagrange multipliers. The stationary solution of (5) will be employed as the 

framework for semi-discrete systems of the problem Eqs. (1) - (4).  

2.2. Semi-discrete system 

We assume discretization of the displacement, linear momentum and Lagrange multiplier fields via 

independent shape functions as 

 𝒖(𝝃) = 𝑵𝑢(𝝃)𝐮, 𝒑(𝝃) = 𝜌(𝝃)𝑵𝑝(𝝃)𝐩, 𝒍(𝝃) = 𝑵𝜆(𝝃)𝛌 (6) 

Where 𝐮, 𝐩, 𝛌 are the vector of nodal values of displacement, linear momentum and Lagrange multipliers. 

After applying the spatial discretization, we can specify the semi-discrete system in the following form 

 𝐀 �̇� + 𝐁 𝛌 = 𝐟 − 𝐊𝐮   Equilibrium equation (7) 

 𝐀T �̇� − 𝐂 𝐩 = 𝟎    Momentum equation (8) 

 𝐁T𝐮 − 𝐋𝒃𝐮𝒃 = 𝟎   Boundary constraints (9) 

 −𝐋𝑏
T  𝛌 = 𝟎    Action and reaction principle  (10) 

where matrices are defined by the integration over the domain of a finite element  

 𝐀𝑒 = ∫ 𝜌𝑵𝑢
T 𝑵𝑝 𝑑𝛺, 𝐂𝑒 = ∫ 𝜌𝑵𝑝

T 𝑵𝑝 𝑑𝛺
𝛺𝑒

 
𝛺𝑒

 (11) 

 𝐁𝑒 = ∫ 𝑵𝑢
T 𝑵𝜆 𝑑𝛤 

𝛤𝑏𝑒
, 𝐋𝑏𝑒 = ∫ 𝑵𝜆

T 𝑵𝑢 𝑑𝛤
𝛤𝑏𝑒

 (12) 

All matrices are then assembled into the global matrices that can be used for solving the problems. 

2.3. Reciprocal mass matrix, dual shape functions and application of boundary conditions 

After elimination of the linear momentum 𝐩 from Eq. (8) and substitution into Eq. (7) we have the 

equilibrium equation in the form  

 𝐀 𝐂−1 𝐀T �̈� + 𝐁 𝛌 = 𝐟 − 𝐊𝐮  (13) 
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We can determine the mass matrix related to inertia forces as  

 𝐌 = 𝐀 𝐂−1 𝐀T (14) 

and its inversion yields the reciprocal mass matrix in the final form 

 𝐌−1 = 𝐀−T 𝐂 𝐀−1 (15) 

In the following, we suggest an optimal choice of the matrices 𝐀 and 𝐂. The shape functions related to the 

discretization of the linear momentum 𝑵𝑝 are chosen as the dual density-weighted function with respect to 

the displacement shape function as follows:   

 𝑵𝑝(𝝃) = 𝜌(𝝃)𝑵𝑢(𝝃)𝐌𝑒
−1𝐌𝑒

𝐿, (16) 

where the consistent mass matrix is given by 

 𝐌𝑒 = ∫ 𝜌𝑵𝑢
T 𝑵𝑢 𝑑𝛺  

𝛺𝑒
   (17) 

and 𝐌𝑒
𝐿 is the lumped mass matrix. After the substitution of (16) and (17) into (11), we have 

 𝐀𝑒 = 𝐌𝑒
𝐿 , 𝐂𝑒 = 𝐀𝒆

T 𝐌𝑒
−1 𝐀𝑒 (18) 

Now we have the diagonal version of the matrix 𝐀 and the evaluation of the reciprocal mass matrix (15) is 

simple due to the inversion of 𝐀. The projection matrix for the higher-order FEM needs to respect the 

higher-order shape functions. The HRZ lumping scheme (Hilton et al., 1976) for obtaining lumped 

(diagonal) version of the matrix 𝐀 is a suitable method for the higher-order FEM. 

Note, the elemental mass matrix can be evaluated via averaging of the lumped and consistent mass matrix  

 𝐌𝑒 = (1 − 𝛽)𝐌𝑒
𝐿 +   𝛽 𝐌e

𝐶, (19) 

where 𝛽 𝜖 [0,1] is the averaging parameter. 

We apply the Dirichlet homogeneous boundary conditions prescribed on 𝛤𝑏 via the projection 𝑷 on the 

reciprocal mass matrix which can be obtained by eliminating of 𝒖𝑏 and 𝛌 from the system (7) - (10). The 

reciprocal mass matrix after applying the Dirichlet boundary conditions takes the form 

 𝐌𝒃
−1 = 𝑷 𝐌−1, 𝑷 = 𝐈 − 𝐌−1𝑩 [𝐁𝐓 𝐌−1 𝐁]−𝟏 𝐁T (20) 

3. Free vibration numerical test 

We test the mentioned direct inverse mass matrix in a free vibration problem of heterogeneous bars 

discretized using shape functions with the orders p = 1, 2, 3 and 5. The free vibration problem in FEM 

based on the direct inverse mass matrix is an eigen-value problem in the form 

 (𝐌𝒃
−1𝐊𝑏 − 𝜔2𝐈) Ф = 𝟎  (21) 

where 𝐊𝑏 and 𝐌𝑏 are the stiffness and mass matrices for the constrained dynamic system. 

In the numerical test, we assume a bimaterial bar made of steel and aluminium. The lengths of the parts are 

L1 = 5 m and L2 = 5 m, cross-sections A1 = 10·10-4 m2, A2 = 5·10-4 m2, mass densities ρ1 = 2700 kg/m3, 

ρ2 = 7850 kg/m3, elastic Young’s moduli E1 = 69·109 Pa, E2 = 210·109 Pa, number of elements for each bar 

part is 50.  

The total mass for the bar can be computed as the total mass 𝑚 = 𝐴1 𝐿1 𝜌1 + 𝐴2 𝐿2 𝜌2 = 33.125 𝑘𝑔.  

In Fig. 1, one can see the eigen-frequency spectrum for the standard mass matrix and the reciprocal version 

with the consistent, averaged and lumped matrix 𝐂 for linear and quadratic FEM. In Fig. 2, one can see the 

eigen-frequency spectrum for shape functions of order p = 3 and p = 5. Based on the results, the direct 

inverse mass matrix gives excellent results for lower frequency range for all matrices and orders. For the 

lumped C, the direct inverse mass matrix produces the same results as the classical approach, which is 

correct. Also the total mass of the bar is preserved in the case of all orders p. 

4. Conclusions 

We have presented the method of direct inverse mass matrix in higher-order FEM and its application to 

free vibration problems. The lower frequency spectrum exhibits a very nice agreement with the classical 
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mass matrices. The suggested methodology conserves the total mass. In future, we plan to test the quality 

of the direct inverse mass matrix in complex dynamic tests and real applications. 

Fig. 1: Frequency spectrum of heterogeneous bar for different mass matrices, linear FEM (on the left) 

and quadratic FEM (on the right). RMM marks the reciprocal (direct inverse) mass matrix. 

Fig. 2: Frequency spectrum of heterogeneous bar with order p = 3 and p = 5. 
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