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Abstract: Recently there is an increasing endeavour to take into account the underlying uncertainties by 

stochastic modelling in order to make the numerical predictions as realistic as possible. Uncertainty 

quantification deals with distinct sources of nondeterminism. A lack of knowledge is expressed by epistemic 

uncertainties while aleatory uncertainties formulate an inherent randomness. In the case of estimating aleatory 

uncertainty, the task is to infer unknown but fixed probability density function and the corresponding epistemic 

uncertainty about this estimation. In order to avoid too strict assumptions about the unknown density function 

(e.g. prescription of a specific parameterised family of probability density functions), it can be modelled 

hierarchically by a stochastic process via the Bayesian nonparametric approach. The contribution presents 

application of a Dirichlet process mixture in modelling the aleatory uncertainty. 

Keywords:  Uncertainty quantification, Bayesian nonparametrics, hierarchical modelling, density 

estimation, Markov chain Monte Carlo. 

1. Introduction 

For appropriate uncertainty quantification one has to distinguish between two principal types of 

uncertainties, specifically, they are epistemic and aleatory uncertainties (Oberkampf et al., 2002). The first 

uncertainty type is connected to a lack of knowledge, e.g. measurement errors or a small number of 

measurements. This epistemic uncertainty can be reduced by any additional information. On the other side, 

there is aleatory uncertainty or variability which is irreducible. The aleatory uncertainty represents natural 

variability or randomness of a considered quantity, which arises from neglecting some problem dimension. 

In other words, this variability originates from data collection, when the data are singled out e.g. from 

different locations or times and modelled as a random variable. 

An estimation of uncertain factors influencing behaviour of an investigated system is a crucial task in 

predicting of future events. Inferring a probability distribution which is an infinite-dimensional object is 

a very complex problem. Commonly applied approaches are based on low-dimensional parameterisations 

of the unknown density function, traditionally they consist in prescribing some specific parameterised 

family of probability density functions (Sankararaman, 2013, Nagel, 2016 and Janouchová, 2018). The 

corresponding unknown statistical moments can be considered as uncertain random variables and inferred 

in the Bayesian way. This approach is based on the Bayesian parametric models whose basic feature is 

a fixed number of unknown parameters. The significant disadvantage of this method is the necessity of 

making the strong assumption about the density function structure. An inappropriate guess can lead to 

a totally misleading result, especially in the regions of low probability which are important e.g. in reliability 

analysis of building structures where the design is based on a very low failure probability.  

Relaxing the density structure assumption is allowed by Bayesian nonparametric modelling which serves 

to model selection and adaptation according to the available data. In order to ensure consistency of the 

estimation, in other words to obtain undistorted inference results, some prior distribution with enough large 

support is necessary. In the case of density estimation, it is reasonable to use an infinite-dimensional 
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nonparametric prior on the space of density functions, i.e. to construct a probability model for the unknown 

probability distribution itself (MacEachern, 2016). Commonly used nonparametric priors include stochastic 

processes or their mixtures, the specific setting is problem-dependent. The Gaussian processes are mostly 

applied in nonlinear regression problems, the mixtures of Dirichlet processes are suitable for density 

estimations (Gelman, 2014). Practically, despite the infinite dimensionality of the assumed prior, 

a finite-dimensional formulation is employed in the computations. The model complexity is determined on 

a basis of the available data, it means that the dimensionality of the Bayesian nonparametric model can 

change with a growing data set (Gershman, 2012). For a comprehensive overview of the Bayesian 

nonparametric methods we refer to the books Hjort et al. (2010) and Ghosal (2017). 

The authors in the paper Liu et al. (2019) present uncertainty quantification approach based on Bayesian 

nonparametric ensemble which distinguishes epistemic and aleatory uncertainties but they consider 

inherent stochasticity in the data generating process such as influence of an imperfect sensor. Aleatory 

uncertainty is estimated only on the level of output for some fixed inputs as their goal is to refine predictive 

property of a constructed regression model. Another application of Bayesian nonparametric modelling as 

a useful tool for nonlinear regression problems can be found in Müller (2013).  

In this contribution, we focus on estimating probability distribution of random factors from a countable 

number of observations with a help of the Bayesian nonparametrics allowing to capture distribution 

properties such as multimodality, asymmetry or heavy-tailedness. Specifically, the unknown but fixed 

probability density function is expressed by a hierarchical model based on the Dirichlet process mixture, 

which enables to model a continuous density function (Ghosal, 2017). 

2. Density estimation 

The most popular nonparametric method for estimating a probability density function is a histogram, more 

sophisticated is a kernel density estimation widely used by frequentists (Izenman, 1991). In the Bayesian 

nonparametrics, the Dirichlet process is well-known tool introduced as a suitable class of prior distributions 

with available analytical formulations of posterior distributions given a sample of observations (Ferguson, 

1973). Particularly, the Dirichlet process is a probability distribution over the set of probability 

distributions, i.e. every realization of the process is a probability distribution. Nevertheless, the samples of 

the Dirichlet process are of a discrete nature, which makes it unsuitable for the density estimation of 

a continuous random variable. To overcome this obstacle, a hierarchical model based on the Dirichlet 

process is utilized producing a mixture of Dirichlet processes also called a Dirichlet process mixture (DPM) 

model (Antoniak, 1974). 

Assuming a set of statistically exchangeable i.i.d. samples  

 𝒙1, … , 𝒙𝑛 ~ 𝐹, (1) 

where ~ stands for “distributed according to” and 𝑥𝑖 ∈ 𝑹, the goal is to infer the unknown probability 

density function 𝑓 as a DPM model, where 

 𝑓(𝒙) = ∑ 𝑤𝑗
∞
𝑗=1 𝑔𝜃(𝒙|𝜽𝑗), (2) 

which is an infinite weighted mixture of smooth densities from a parametric family 𝑮 = {𝑔𝜃|𝜽 ∈ 𝜣} with 

latent variables 𝜽. Weights 𝑤𝑗 represent a Dirichlet process and their sum is equal to one. Considering 𝑃0 as 

a probability measure on the parameter space 𝜣, the DPM has the following hierarchical structure: 

 𝑃 ~ DP(𝛼, 𝑃0)  

 𝜽1, … , 𝜽𝑛|𝑃 ~ 𝑃  

 𝒙𝑖|𝜽𝑖 ~ 𝑔𝜃(𝒙, 𝜽𝑖),   𝑖 = 1, … , 𝑛. (3) 

A random probability distribution 𝑃 is generated by a Dirichlet process with a positive scalar 𝛼 called 

a concentration (or precision) parameter because it defines a spread of the prior distribution 𝑃 around the 

base (or center) distribution 𝑃0, which is the prior expection of 𝑃. A higher value of 𝛼 means a higher level 

of the centralization. 

For a sake of clarity, we give an example of observations from a mixture of normally distributed random 

variables where the observed data coincide with the random effect whose unknown probability distribution 

is the object of the Bayesian inference. In this case, the densities 𝑔𝜃 are assumed to be Gaussians with 
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unknown mean values 𝝁 and covariance matrix 𝚺. The base distribution 𝑃0 is assumed to be the normal-

inverse-Wishart distribution which is conjugate prior distribution for (𝝁, 𝚺) and has its own four parameters. 

Multiplying this prior density by the normal likelihood gives a posterior density of the same family, which 

fundamentally simplifies the actual computations (Gelman, 2014). The inference is focused on the 

marginalized posterior distribution 𝑝(𝜽1:𝑛|𝒙1:𝑛) since the infinite-dimensional 𝑃 is integrated out with 

a help of Polya urn representation of the Dirichlet process (Blackwell, 1973). The posterior samples can be 

obtained almost directly by Gibbs sampling (Spall, 2003 and MacEachern, 1998). The estimated density 

function in a comparison with the true density and observations is depicted in Fig. 1. 

 

Fig. 1: Example of density estimation for mixture of two Gaussians 0.5𝑁(2,1) + 0.5𝑁(10,3). 

Comparison of true and estimated probability density function based on Dirichlet process mixture of 

Gaussians considering set of 50 observations. 

3.  Conclusions 

The Bayesian nonparametric methods enable to quantify uncertainties more precisely without making 

restrictive assumptions about their probability distributions as it is done in the parametric approaches where 

the structure and a number of parameters of the estimated density function are prescribed a priori. 

Specifically, properties such as multimodality or asymmetry of the density function are usually omitted 

which can lead to unrealistic predictions and then to a wrong evaluation of risks connected to the modelled 

system. 

Usually a limited number of observations of the uncertain effect is available and the hierarchical model 

based on the Dirichlet process mixture allows to share information among these samples. The 

nonparametric inference results in the density estimation of aleatory uncertainty formulated as a weighted 

finite-dimensional mixture of densities with random parameters. The number of components is determined 

on a basis of clustering the processed data so the parameterisation is not fixed.  

This paper gives a very brief view into the world of the Bayesian nonparametrics with a simple illustrative 

example, however modelling density estimation especially in higher dimensions is not trivial. This topic is 

very actual and different effective methods have been developed in this area. Besides using the Dirichlet 

process mixtures, some researchers are focused on constructing hierarchical models based on the Pólya tree 

(Christensen, 2019). Another method is based on separating marginal and joint distribution by using copula 

transform (Majdara, 2019). 

Finally, the important part of employing the infinite-dimensional priors for a density function space is its 

computational feasibility. The posterior distributions for non-conjugate priors require a special treatment 

to eliminate the error caused by the numerical integration and the computational demands. For example, 

the paper Neal (2000) presents a usage of the Metropolis-Hasting algorithm with the conditional prior equal 

to the proposal distribution. As an alternative to Markov chain Monte Carlo methods, Blei (2006) introduces 

deterministic algorithms derived from variational methods. 
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