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Abstract: At present, multiplicative plasticity-based models are used to model material degradation 
of hyperelastic materials within the framework of finite-strain elastoplasticity. The underlying theory assumes 
that the intermediate configuration of the body is locally unstressed, and as a result, no plastic deformation 
field exists that meets the conditions of compatibility. The assumption is; however, neither mathematically nor 
physically justified and the related material models are not continuum-based. In this paper, an alternative 
strain-rate dependent hyperelastic-plastic material model is presented. Based on the theory of nonlinear 
continuum mechanics for finite deformation of elastoplastic media, the model can describe the plastic flow in 
an objective and thermodynamically consistent manner. Therefore the strain-rate density of the model and the 
specimen from the uniaxial tensile test of the modelled material can be related. In this paper, the dynamic 
behaviour of a silicone cross-shaped specimen is studied numerically using a Mooney-Rivlin material model 
with internal damping. 

Keywords:  Nonlinear continuum theory for finite deformations of elastoplastic media, Objective and 
thermodynamically consistent formulation, Hyperelastic-plastic material, Mooney-Rivlin 
material with internal damping. 

1. Introduction 

Hyperelastic materials, such as natural and synthetic rubber, vulcanized elastomers, various types of 
polymers, biomaterials and many others are nonlinear elastic materials. The characteristic feature of 
hyperelastic materials is that they can undergo large elastic deformations without permanent deformations 
or being damaged. The materials are often considered to be isotropic, and their constitutive functions are 
derived from strain energy density functions (Hackett, 2018). 

At present, hyperelastic-plastic multiplicative plasticity models are used to model material degradation of 
hyperelastic materials within the framework of finite-strain elastoplasticity. The underlying theory assumes 
that the intermediate configuration of the body is stress-free (Simo and Hughes, 2000) or locally unstressed 
(De Souza Neto et al., 2008), for which no plastic deformation field exists that meets the conditions of 
compatibility. The assumption is; however, neither mathematically nor physically justified, and their related 
material models are not continuum-based (Écsi et al., 2019b). 

The aim of this paper is to present a numerical study on material degradation of a silicone cross-shaped 
specimen loaded in biaxial tension at various strain rates. In the numerical experiments, an alternate strain-
rate dependent hyperelastic-plastic Mooney-Rivlin material model with internal damping has been used. 
The material model is based on the nonlinear continuum theory for finite deformations of elastoplastic 
media which allows for the development of objective and thermodynamically consistent material models 
(Écsi and Élesztős, 2018; 2020). A few selected analysis results are presented and briefly discussed. 

2. The stress constitutive function of the material 

Écsi and Élesztős (2018; 2020) presented the nonlinear continuum theory for finite deformations of 
elastoplastic media. The modified Mooney-Rivlin material model, based on this theory, is capable of 
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imitating material degradation of hyperelastic materials within the framework of finite-strain 
elastoplasticity. When considering the kinematics of deformation, the theory allows for the separation of 
the elastic motion from the plastic motion by subtracting the Lagrangian plastic displacement field from 
the overall Lagrangian displacement field. Then assuming that the body undergoes elastic deformation and 
then plastic deformation at its every constituent, the elastic part of the deformation gradient, which maps 
every material point from the initial to the intermediate configuration of the body, can be expressed as: 
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Furthermore, considering that the elastic deformation gradient can multiplicatively be split into a volumetric 
part el

volF  and an isochoric part el
isoF , the left elastic isochoric Cauchy-Green deformation tensor can be 

expressed in the following form (De Souza Neto et al., 2008 and Hackett, 2018): 
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The corresponding strain energy density function in the Kirchhoff stress space defined over the intermediate 
configuration of the body, therefore, remains the same and takes the following form in the case of the 
compressible Mooney-Rivlin material (Crisfield, 2001 and Hackett, 2018): 
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Here ( ) ( )* * * *
1 1 2 2 and el el

iso isoI I I I= =B B  respectively, are the invariants of the characteristic equation of the 

associated eigenvalue problem defined by the el
isoB  matrix and ( )detel elJ = F  is the Jacobian of elastic 

deformation. Then material parameters 10C  and 01C , characterizing shear behaviour of the material, and 
,d  which controls bulk compressibility, are material constants (De Souza Neto et al., 2008 and Hackett, 

2018). The stress constitutive function of the modified Mooney-Rivlin material then can be expressed as 
a Kirchhoff stress measure in the intermediate configuration of the body as: 
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After carrying out the differentiation, Eqn. (4) can be manipulated into its final form: 
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where el
isodev ⎡ ⎤⎣ ⎦B  and ( )2el

isodev ⎡ ⎤
⎣ ⎦B  denote the deviators of the tensors el

isoB  and ( )2el
isoB respectively.  

In order to take into account the internal damping, a viscous term was added to the stress constitutive 
function of the material, which takes the following form in the reference configuration of the body (Jerábek 
and Écsi, 2019): 
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Here elS  is the elastic part, and  visS  is the viscous part of the 2nd Piola-Kirchhoff stress tensor, el∗E&  is the 
material elastic Green-Lagrangian strain-rate tensor (Écsi et al., 2019a) and mat visC  is the fourth-order 
material viscosity tensor, expressed in the form: 
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where  visG  is the viscous shear modulus,  visλ  is the viscous Lamé constant,  and II are the symmetric 
fourth- and second-order identity tensors, visE  is the viscous Young’s modulus, and  visυ  is the viscous 
Poisson’s ratio. 

The final form of the stress constitutive function of the modified Mooney-Rivlin material with internal 
damping then can be expressed as follows in the current configuration of the body: 
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In our study, we considered J2 plasticity with isotropic hardening to take into account the plastic flow in the 
material. The corresponding yield surface was defined in the Kirchhoff stress space in the same way as in 
(Écsi and Élesztős, 2020). 

3. Numerical experiment and results 

In our numerical experiment material degradation of a silicone cross-shaped specimen in biaxial tension 
was studied at various strain rates. The geometry and the material parameters of the specimen were the 
same as of the one used by the collective Putra et al. (2017) in their real experiment. In the numerical study 
1/8 of the FE model was considered employing three planes of symmetry. The biaxial tension was imposed 
as a prescribed axial velocity acting at the moving ends of the specimen using 0.02 m.s-1, 0.1 m.s-1 and 
0.2 m.s-1 values in every single experiment. The specimen was initially at rest except for the nodes at the 
specimen moving end, where the prescribed velocities acted. The analyses were run as dynamic until they 
failed to converge using implicit time integration and a 0.0005 s time step size. Fig. 1 depicts the spatially 
discretized body of the specimen, where the arrows indicate the prescribed axial velocities.  

 
Fig. 1: The spatially discretized specimen. 

Tab. 1: Material properties of the specimen. 
3

0  kg mρ −⋅⎡ ⎤⎣ ⎦  1 520 

[ ]10  C Pa  114 800 

[ ]01  C Pa  -9 040 

[ ] d −  0.00000624054 

[ ]vis  E Pa s⋅  7 310 

[ ]vis  υ −  0.47 

[ ] y Paττ  700 000 

[ ] Q Paτ  100 000 

[ ] b −  2.0 

Tab. 1 outlines the material parameters used in the finite element analysis, where the last three constants 
are the parameters of the uniaxial Kirchhoff stress-strain curve of the material. Here y

ττ  is the constant 

yield stress, Qτ  is the maximum hardening stress, and b  is the maximum value of the axial plastic strain, 
at which the material loses its integrity.  
 

 
Fig. 2: Accumulated plastic strain distribution [-]. 

 
Fig. 3: Von Mises stress distribution [Pa]. 
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The figures above show the accumulated plastic strain and the von Mises stress distribution over the 
specimen at the end of the analysis using 0.02 m.s-1 prescribed axial velocity. 

 
Fig. 4: A few selected time-history curves. 

In order to take a more in-depth look at the analysis results, time-history curves of selected variables at 
nodes N2E78 and N17E120 were created (Fig. 4, see Fig. 1 for the location of the nodes). The figure shows 
that the greatest axial elongation of the specimen was at 0.02 m.s-1 prescribed velocity. The accumulated 
plastic strain, which is the measure of material degradation, decreases with increasing values of the 
prescribed velocity. The maximum value of the von Mises stress, on the other hand, increases with 
increasing values of the prescribed velocity, while the corresponding plastic work decreases.

4.  Conclusions  

In this research, an alternative strain-rate dependent hyperelastic-plastic Mooney-Rivlin material model 
with internal damping has been presented. Based on the nonlinear continuum theory of finite deformations 
of elastoplastic media, the model enables to characterize material degradation and describe the plastic flow 
in an objective and thermodynamically consistent manner. The analysis results seem to be reasonable, 
though proper verification of the material model requires thorough material testing, which still needs to be 
done. 
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