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Abstract: Bone staples are used for epiphysiodesis, which is orthopedic surgery correcting bone deformities, 

eg. varus or valgus deformity and length discrepancy. Stresses and displacements caused by interaction 

between staples and tibia are calculated via the finite element method. Determined values are used for bone 

staples assessment and clinical applications for treatment of patients. 
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1.  Introduction 

Epiphyseal stapling is a method of bone growth control using 

metal staples implanted into a specific part of children’s bone 

to temporarily prevent its growth. The method was introduced 

by Walter Blount (Blount, 1949) and since then it became 

a common procedure of correcting mainly angular deformities 

(genu varum or genu valgum) of the knee in children. Growth 

of children or adolescent bone is provided mainly by physis, 

i.e.  a cartilage structure near joints. Using the staple, we can 

restrain the physis either on both sides when correcting limb 

length discrepancy (i.e. ‘epiphyseodesis’) or on one side only 

when correcting angular deformities (i.e. 

‘hemiepiphyseodesis’). Unlike the method of permanent 

epiphyseodesis (Phemister, 1933), the epiphyseal stapling 

does not destroy the physis and therefore makes possible 

to restore the growth when the optimal correction is achieved. 

Although recently, the tension band technique introduced 

by Peter M. Stevens (Stevens, 2007), using a non-locking 

plate and two screws almost in the same position like staples, 

has slowly became a preferable alternative to stapling. 

Blount’s original method still remains an effective means 

to treat lower limb deformities in adolescents. 
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Fig. 1: Long radiogram of preoperative 

genu valgum and consecutive 

correction with staple. 
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Apart from accurate diagnosis confirmed 

by radiogram of whole limb (Fig. 1), 

good timing of treatment is very 

important. The operational procedure 

includes short longitudinal incision 

through soft tissues over the physis and 

implantation of staple extraperiosteally 

with special instrument and under 

radiographic control (Fig. 2). The staple 

must bridge the physis but must not 

penetrate it to prevent its impairment 

(Fig. 3). The staples should not 

be restricting the physis longer than 2 

years to prevent its permanent growth 

cessation. Other complications during 

treatment can occur such as damaging the physis by imprecise staple implantation, mechanical failure of 

the staple (banding, rarely break) or staple migration. The last one is also the most often complication 

and disadvantage compared with tension band technique. 

2. Computational Model of Staples in Tibia 

To determine the behavior of bone staples used during treatment of Epiphysiodesis, a computer model 

of proximal part of tibia was created. This model was then split in the place of epiphyseal disk for further 

simulation of bone growth, see Fig. 4a. For this determination a set of two bone staples was chosen, for 

example see Fig. 4b. For more realistic approach (simulating staple migration), the contacts between bone 

staples and bone were set as frictional, with friction coefficient 0.2 acquired via educated guess. The 

reasoning behind this contact is the possibility of staple migration as mentioned before also due to staples 

flat surface. Provided models of bone staples from MEDIN a.s, were put into place as in real treatment, 

to slow the growth of epiphyseal disk see Fig. 4c. 

 

Fig. 4: a) Model of split tibia; b) Bone staples; c) Final model of split tibia with staples. 

Material models of both bone and steel are assumed homogenous and isotropic, see Tab. 1 

and (Drápala, 2018; Hlinka, 2016 and Losertová, 2016). The emphasis is put on bone staples. Hence, 

there is no need to divide tibia into cortical and spongiosal part (i.e. simplification). 

Tab. 1: Mechanical properties of bone and steel. 

Material Young’s modulus [GPa] Poisson’s ration [1] Yield stress [MPa] 

Cortical Bone 0.161 0.3 – 

Stainless steel 1.4441 183 0.33 690 

 

 

Fig. 2: Implantation 

of staples. 

 

Fig. 3: Position of staples 

bridging the physis. 
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3. Stress-Deformation Analysis 

Anatomical CAD model of tibia (acquired by 3D CT 

scan) with staples was then imported into Ansys 

Workbench 2019 R3 sw for further computations. 

Bone model was meshed by quadratic tetra elements 

with average element size of 5 mm. Bone staple 

models were meshed with average element size 

of 1 mm. Element size was locally reduced to 0.5 mm 

in places with stress concentration. 

The bone growth is simulated by internal tensile 

stress in bone acting as magnification (growth) of 

epiphyseal disc. Used boundary conditions are 

shown in Fig. 5. Two forces “B” and “C” of value 

980.7 N ≈ 100 kg, which may occur after 

growth over time, due to the expansion of epiphyseal 

disc, were used as complex tensile forces (i.e. 

overloading) for simulation of bone growth. 

Displacement “A” acts as a weak simulation of a knee (for stabilization of numerical solution), therefore, 

in this case only allowing vertical movement in the direction Z of growth. Fixed support “D” acts 

as a definition of position of bone in space, not allowing any movement. 

4. Results 

From the results of stress-deformation analysis can be determined that the maximum stress occurs 

in sections of staples with radius and narrowed cross section, see Fig. 6. The maximum stress is where the 

singularity occurs and therefore the evaluated maximum stress is taken from place identified as 

“DETAIL”. 

 
Fig. 6: Equivalent von Mises stress distribution and maximum stress in staple [MPa] (remote tensile 

forces 980.7 N). 

 

Fig. 7: Total displacement of bone staples [mm] (remote tensile forces 980.7 N). 

Fi.  5: Boundary conditions. 

188



 

 5 

Maximum displacement occurs on parts of bone staples which are located inside proximal part of tibia, 

due to growth of bone, which pushes this part upwards, see Fig. 7. 

Bone was also analyzed and found sufficiently safe, because the bone tissue is practically intact around 

the bone staples. Therefore, there is no risk of any relevant mechanical damage (i.e. no fracture occurs). 

5.  Conclusions 

In orthopedics, the bone staples are used to correct limb length discrepancy by implanting them into 

proper parts of tibia or other suitable bones. Evaluation of stresses and displacements in staples were done 

by the finite element analysis (ANSYS WORKBENCH 2019 R3 sw). Used models of staples were 

provided by MEDIN a.s. Bone growth was performed via overloading by estimated axial tensile force 

980.7 N ≈ 100 kg acting in epiphyseal disk. 

Bone staples are made from medical grade stainless steel 1.4441. Minimum yield strength of this steel 

is 690 MPa. The calculated maximum equivalent von Mises stress in staple is 627.77 MPa. This stress is 

smaller than minimum yield stress even in the place of singularity in FEM model (i.e. safe state, 

recommended for medical treatment). Calculated total maximum deformation of staple is 0.125 mm. 

Hence, because calculations were done for overloading, the staples and their applications are safe 

and suitable for medical applications. 

Results may differ from person to person (anthropometry) and huge part of variance can be caused by 

staple placement. 

For future endeavors, a heterogenous material (considering spongy bone and different mechanical 

properties in different parts of the bone) can be used and to verify these results, also an experiment should 

be done. 
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