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MULTIFOLD STATIONARY SOLUTIONS  

OF AN AUTO-PARAMETRIC NON-LINEAR 2DOF SYSTEM 
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Abstract: A non-linear 2DOF model of a bridge girder with a bluff cross-section under wind loading is used 

to describe the heave and pitch self-excited motion. Existence conditions of stationary auto-parametric 

response for both the self-excited case and an assumption of a harmonic load form a non-linear algebraic 

system of equations. Number of distinct solutions to this algebraic system depends on the frequencies of two 

principal aero-elastic modes and other system parameters. Thus, the system may possess none, one, or several 

stationary solutions, whose stability has to be checked using the Routh-Hurwitz conditions. If all quantities 

entering the system are continuous functions, individual solutions may exhibit (piecewise) continuous 

dependence on selected system parameters. Thus, multiple identified solutions to the system for a given set of 

parameters may actually belong to a single solution branch and their values can be determined from the 

knowledge of the solution branch. Such a situation may significantly simplify assessment of stability of the 

particular solutions and/or provides an applicable overall description of the system response.  
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1. Introduction 

Description of the behaviour of a dynamical system, which represents a structure, is an important part of 

its design. When the prospective structure is subjected to complex ambient excitation, the correct 

understanding of the response character is necessary. For example, vibration of a slender prismatic body in 

an air cross-flow results from the aero-elastic interaction between the non-conservative and gyroscopic 

forces and effects emerging due to vortex shedding processes. A sufficient description of the post-critical 

behaviour is of fundamental importance for functionality and safety of any structure.  

The generally used single-degree-of-freedom (SDOF) or more complicated two-degree-of-freedom (2DOF) 

section models of a structure in an air stream represent a reasonable compromise between complexity and 

ability to characterise the dynamic processes, e.g., (Strømmen, 2006). Such simplified models are often 

successfully used in aerodynamic wind tunnel experiments (Král et al., 2014, Rizo et al., 2018). The 2DOF 

mathematical model used in this work includes a combination of the van der Pol and Duffing types of non-

linearities. These are suitable for description of a strong quasi-periodic response, characterized by a beating 

effect which combines self-excited and forced vibrations. Subsequently, the presence of symmetric or 

asymmetric beating indicates an exchange of energy between individual degrees of freedom.  

The non-linear model presented in this paper – a generalized van der Pol equation – introduces bi-quadratic 

damping terms into both coordinates in order to explain the concurrent effect of forced and self-excited 

vibrations which appears when the two vibration frequencies are close to each other and lead to 

a quasiperiodic response. The bi-quadratic terms may attain low or even negative values of damping which 

enables to model the auto-parametric resonance effects present in real structures. Detailed properties and 

effects of the bi-quadratic damping term in the van der Pol equation were studied by the authors in recent 

works, see (Náprstek and Fischer, 2019, Fischer and Náprstek, 2019) and references in these papers. The 

general properties of the 2DOF system used in this paper were published recently in (Náprstek and Fischer, 

2020), where the authors paid a particular attention to differences between linear and non-linear models. 

The present work addresses particular details regarding identification of distinct stationary solutions. 
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The paper is organized as follows. After this 

introduction, Section 2 summarizes the non-linear 

mathematical model. Section 3 presents a 

procedure for identification stationary self-excited 

and harmonically forced solutions, their 

uniqueness is discussed in detail. Finally, Section 

4 concludes. 

2. Mathematical model 

With respect to experimental results, two limit 

cycles (stable and unstable) determine behaviour 

of the non-linear response of a bridge girder, see 

a schematic plot in Fig. 1. Such behaviour of the 

theoretical model is made possible by the presence of fourth powers of variables 𝑢 and 𝜑 in both damping 

terms. The non-linear mathematical model can be assumed as follows: 

 

 

Symbols 𝜔𝑢
2,  𝜔𝜑

2  stand for the eigen-frequencies in heaving or pitching modes, respectively; 𝑏𝑚, 𝑏𝐼 denote 

damping parameters; 𝑞 is a gyroscopic coefficient; 𝑝 represents non-conservative force; 𝑔, ℎ are parameters 

that balance the physical dimensions in Eq. (1); e.g., 𝑔 = 1 m−2, ℎ = 1 m2. In the damping terms, symbols 

𝜈𝑢, 𝜈𝜑 [s−1m−2] characterize for positive values local destabilization in the neighbourhood of the trivial 

solution (or of the origin) due to increasing displacement amplitudes; 𝜗𝑢, 𝜗𝜑 [s−1m−4] stabilize 

displacement amplitudes within a stable limit cycle, they are always positive. On the right hand side 

𝑄𝑢, 𝑄𝜑 [𝑚 s−2, rad s−2] represent an additive excitation. 

The choice of the damping model in Eq. (1) causes instability of the trivial solution (i.e. zero response) and 

enables stabilization of the system at a certain stable limit cycle, even though such displacement amplitudes 

can become unacceptable from the viewpoint of system reliability. The model is suitable for description of 

the system in a resonant state (frequency locking). The excitation terms 𝑄𝑢, 𝑄𝜑 represent action of the 

vortex shedding. Both components are mutually connected by means of coefficients 𝑝, 𝑞. 

Properties of possible stationary responses in both self-excited and harmonically excited states can be 

determined using the harmonic balance approach. For this purpose, the solution can be expected in the form 

 

where the response frequency Ω is close to the flutter frequency in the homogeneous case and to the 

excitation frequency when a harmonic excitation is assumed, see (Náprstek and Fischer, 2020) for details. 

In the former case, the stationary solutions (2) to the system (1) has to fulfil a non-linear algebraic system 

consisting from four equations for three response components 𝐴𝑢, 𝐴𝜑, Δ𝜓 = 𝜓𝑢 − 𝜓𝜑, and the flutter 

frequency Ω. 

When a harmonic external excitation is assumed, 𝑄𝑢 = Φ𝑢 cos Ω𝑡, 𝑄𝜑 = Φ𝜑 cos Ω𝑡, the corresponding 

algebraic system for unknowns 𝐴𝑢, 𝐴𝜑, 𝜓𝑢, 𝜓𝜑 is given as follows: 

 

 

 

 

 

 

 

 

Fig. 1: Schematic 2DOF model of a bridge girder 

under wind loading; the response in heave u(t) 

(vertical direction) and pitch φ(t) (rotation 

around point S) is assumed. 

(1) 

(2) 

(3) 
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3. Analysis 

The non-linear systems Eq. (3) naturally possess none, one or more solutions for a given set of system 

parameters. Unfortunately, they have to be identified numerically because the explicit solution is not 

feasible. A numerical solution procedure identifies only single value, which may be, but does not need to 

be, close to an initial guess. To identify and analyse the major part of stationary solutions to Eq. (1), the 

system Eq. (3) was repeatedly solved for fixed system parameters 𝑔 = ℎ = 1, 𝑝 = 𝑞 = 0.2,  𝑏𝐼 = 𝑏𝑚 = 0.2 

𝜈𝑢 = 𝜈𝜑 = 0.5, 𝜗𝑢 = 𝜗𝜑 = 0.025 and the excitation amplitude Φ𝑢 = 0.5, Φ𝜑 = 0; with initial values 

covering the complete area of interest 𝐴𝑢, 𝐴𝜑 ∈ (0.05, 2), 𝜓𝑢, 𝜓𝜑 ∈ (−𝜋, 𝜋) (2 756 840 configurations) 

in the eigen-frequency and excitation-frequency range 𝜔𝑢
2, 𝜔𝜑

2 ∈ (0.01, 2.35) and Ω ∈ (0.1, 2) (total 

83 942 frequency configurations). The found solutions were normalized (0 <  𝐴𝑢,  𝐴𝜑 and 

0 ≤ 𝜓𝑢, 𝜓𝜑 ≤ 2𝜋) to exclude repeated cases. In total, 85 618 distinct solutions were found for given 

frequency configurations, the vast majority was unique (91 %), only marginal number was threefold (8 %) 

and fivefold (1 %). A distribution of multifold solutions in the eigen-frequency plane is shown in Fig. 2. 

For an increasing excitation frequency the multifold solutions form a characteristic shape which 

corresponds to areas of increased stationary response, cf. (Náprstek and Fischer, 2020). The actual values 

of numerically identified amplitudes are shown in Fig. 3. The plots correspond to a particular configuration 

visible as horizontal section for 𝜔𝜑
2 = 0.975 in Fig. 2, case Ω = 1. The lowest blue curves depict the basic 

low amplitudes, which are present for all frequency configurations. Two brighter upper curves represent 

upper branches of possible stationary solutions. 

The numerically obtained solutions provide only a quantitative information and their contribution to an 

overall insight is limited. Indeed, a numerical study brings a possibly huge set of discrete values, however, 

detailed information on their mutual connection is available only partially. On the other hand, the 

determined individual values of solutions can serve as good initial values for application of the numerical 

continuation technique, see, e.g., the monograph by Allgower and Georg (1990). This approach allows for 

determination of a general continuous dependence between individual parameters and enables to determine 

fine-grained details. An example is presented in Fig. 4. The plots show the numerically obtained amplitudes 

𝐴𝑢, 𝐴𝜑 for fixed values of eigenfrequencies 𝜔𝑢
2 = 0.375, 𝜔𝜑

2 = 1.425 depending on the excitation 

frequency (in the 𝑢 component). The curves in Figs. 4a and 4c represent the resonance plots with a standard 

resonance peak around Ω ≈ 0.6 and the internal resonance zone around Ω ≈ 1.2, cf. the detailed plots in 

Figs. 4b and 4d. The numerical analysis revealed results indicated by the round dots. Mostly a only single 

blue dot is shown for each sample frequency, with an exception of Ω = 1.2, where the numerical result 

 

Fig. 2: Number of solutions in the 𝜔𝑢
2 × 𝜔𝜑

2  plane: blue – unique, green dots – threefold, 

 red dots – fivefold solutions (excitation in the direction u only). 

 

 

Fig. 3: Multiple solution branches for 𝛺 = 1 and 𝜔𝜑
2 = 0.975 according to the numerical analysis. 
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detected five different solutions indicated as dots with different colour, see details in Figs. 4b and 4d. The 

red and blue lines in this plot correspond to result obtained via numerical continuation with respect to the 

excitation frequency Ω, taking the five distinct values for Ω = 1.2 as the starting points. It appeared that 

these five samples correspond to three disjoint resonance curves, one spanning the complete frequency 

interval and the other two form isolated closed curves. The curves in Fig. 4 are divided to blue solid and 

red dashed parts, which denote stable and unstable intervals according to the Routh-Hurwitz conditions. 

Thin black and brown lines denote stability limits corresponding to the individual RH conditions, their 

detailed description is, however, beyond scope of this work. 

4.  Conclusions 

Numerical analysis has its indispensable position in a detailed investigation of complicated non-linear 

algebraic and differential systems. When properly used, it can provide results which are comparable to 

those obtained analytically. This was demonstrated on the bifurcation analysis of a 2DOF non-linear 

aeroelastic system. The presented methodology proved to be able to predict parameter areas where 

multifold stationary response can be expected. 
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Fig. 4: Resonance curves of the 2DOF system for excitation amplitudes 𝛷𝑢 = 0.25,  0.5,  1.0; 𝛷𝜑 = 0 

computed numerically (dots) and using the continuation technique (lines); 

a),c): amplitudes 𝐴𝑢, 𝐴𝜑, respectively, b),d): detailed plots for 𝛺 ∈ (1.15, 1.27). 

133


