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Abstract: Superficial lamina propria (SLP) is a water-like vocal fold (VF) layer located directly under over-
lying epithelium. Its material properties affect VF motion and thus resulting spectrum of produced sound.
Influence of stiffness and damping of the SLP on sound spectrum of Czech vowels is examined using a two-
dimensional (2D) finite element (FE) model of a human phonation system. The model consists of the VF
(structure model) connected with an idealized trachea and vocal tract (VT) (fluid models). Five VTs for all
Czech vowels [a:], [e:], [i:], [o:] and [u:] were used and their geometry were based on MRI data. Fluid flow
in the trachea and VT was modelled by unsteady viscous compressible Navier-Stokes equations. Such a formu-
lation enabled numerical simulation of a fluid-structure-acoustic interaction (FSAI). Self-sustained oscillations
of the VF were described by a momentum equation including large deformations and a homogeneous linear
elastic model of material was used. Fluid and structure solvers exchange displacements and boundary forces
in each iteration. During closed phase VFs are in contact and fluid flow is separated. We can observe that both
the damping and the stiffness of the SLP substantially influence the amplitude and frequency of VFs vibration
as well as the open time of the glottis.

Keywords: Simulation of phonation, Fluid-structure-acoustic interaction, Czech vowels, Finite element
method, Biomechanics of voice.

1. Introduction

Changes between convergent and divergent glottal shape play a crucial role in energy transfer during self-
sustained oscillations of VFs, see Thomson et al. (2005). Since the structure of VF surface is similar to
an inflatable ball filled with water, we can imagine the epithelium as a ball and the SLP as water. Thus
tissue changes in the SLP influence self-oscillations of the VFs.

Tanabe et al. (1979) and Chan et al. (2000) measured, modelled and extrapolated damping ratios of selected
VF layers, which can be used for FE modelling of VF motion. They showed that VF damping is below
a critical damping value with the damping ratio around 0.1. Titze et al. (2017) pointed out that stiffness
of the VF is more dominant than tension for oscillation frequencies under 1000Hz. One of the most recent
studies of Zhang (2016) investigated effects of VF thickness of medial surface, glottal opening, subglottal
pressure and VF stiffness. He concluded that the increasing stiffness reduces noise and amplifies higher-
order harmonics in vowel spectrum to some extent.

The 2D computational model presented in this article continues the previous works of Švancara et al. (2014)
and Hájek et al. (2018). The three previous VT shapes for Czech vowels are complemented here by two
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additional VTs for Czech vowels [e:] and [o:] reconstructed from MRI data, see Radolf (2010). Also,
the fluid FE mesh was refined here to capture smaller eddies.

2. Methods

All 2D FE models of FSAI during VF self-oscillation were developed in the software ANSYS 15.0, see
Fig. 1 a)–e), g). The models consist of simplified trachea, four-layered VF based on M5 geometry, see
Scherer et al. (2001), and five VTs for all Czech vowels [a:], [e:], [i:], [o:] and [u:]. All the models
are composed of 16 097 linear elements with 16 306 nodes. Material parameters (including damping) are
summarized in Fig. 1 f), i).

The computational algorithm is as follows: the model is excited by a mean lung pressure pLu = 270Pa
at the entrance to the trachea (Fig. 1 a)). The air flow propagates through the trachea and loads the VFs
which start to move. When VFs open the air flows through the VT and generates pressure waves forming
the vowel spectrum. Deformation of the fluid mesh is solved by an in-house Arbitrary-Lagrangian-Eulerian
algorithm, details in Švancara et al. (2014).
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FLUID cair [m·s-1] η [Pa·s] ρ [kg·m-3]

Air (for 36 °C) 353 1.81351·10-5 1.205

STRUCTURE E [Pa] μ [–] ρ [kg·m-3]
Epithelium 25000 0.49 1040

SLP 2000÷3500 0.49 1040
Ligament 8000 0.49 1040
Muscle 65000 0.40 1040

VARIANT bp1 [–] bp2 [–]
1 0.05 0.10
2 0.10 0.20
3 0.20 0.30
4 0.30 0.40

a) f )

g)

h)

i)

b) e)d)c)

Fig. 1: a) 2D FE model for the [o:] vowel, b)–e) vocal tracts for the remaining vowels, f) material properties
of the fluid model where cair – speed of sound in the air, η – dynamic viscosity and ρ – density, g) four-
layered model of VF, h) four variants of chosen damping ratios and i) material properties of the VF where
E – Young’s modulus, µ – Poisson’s ratio and ρ – density.

Eighty combinations of tested parameters were prepared, see Tab. 1. Four variants of Young’s moduli
of the SLP (ESLP) were used for each vowel and four variants of damping were used for each stiffness ESLP

according to Tab. 1. From pairs of damping ratios bp1 and bp2 (Fig. 1 h)) and from the natural frequencies of
the VF coefficients of proportional damping α and β were calculated and used in computations, for details
see Hájek et al. (2018). Each computation of a 0.1 s long phonation took between 7 and 12 hours on Intel®
Core™ i7–7700K with 32 Gb of RAM.

3. Results and discussion

The structural results are given in Tab. 1. Vibration frequency f , maximal width of glottisWGmax and open
quotient OQ were evaluated from one of the last computed periods, see Fig. 2 (top left). From the results it
is apparent that both the increasing stiffness and increasing damping reduce WGmax. Rising stiffness also
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decreases OQ whereas damping has an opposite influence in some variants. Frequency of self-sustained
VF vibrations f lies between 80 and 170Hz which is in a range of normal male phonation.

Tab. 1: Vibration characteristics of VFs.
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f [Hz]
WG max 

[mm]
OQ  [–] f  [Hz]

WG max 

[mm]
OQ  [–] f  [Hz]

WG max 

[mm]
OQ  [–] f  [Hz]

WG max 

[mm]
OQ  [–] f  [Hz]

WG max 

[mm]
OQ  [–]

0.5083 0.0002
1.0165 0.0004 130 0.39 0.26 137 0.48 0.37 141 0.45 0.38

60.3776 0.0006 130 0.39 0.30 137 0.49 0.41 137 0.43 0.42 135 0.46 0.32 137 0.42 0.33
119.7386 0.0007 132 0.37 0.33 143 0.46 0.43 133 0.43 0.44 133 0.44 0.33 133 0.41 0.35

1.7917 0.0002 130 0.34 0.22 154 0.38 0.28 139 0.36 0.22
3.5834 0.0004 115 0.32 0.24 143 0.42 0.36 137 0.38 0.38 132 0.37 0.28 130 0.34 0.30

64.4495 0.0006 116 0.30 0.27 133 0.39 0.39 133 0.36 0.41 128 0.34 0.31 130 0.34 0.32
125.3155 0.0007 120 0.30 0.29 135 0.39 0.39 115 0.42 0.32 123 0.32 0.32 125 0.32 0.34

2.7622 0.0002 119 0.29 0.20 169 0.32 0.31 137 0.33 0.30 116 0.28 0.19 112 0.31 0.20
5.5243 0.0004 128 0.29 0.24 133 0.33 0.28 169 0.27 0.29 130 0.29 0.25 108 0.30 0.23

67.5990 0.0006 103 0.27 0.23 116 0.29 0.28 106 0.27 0.24 111 0.28 0.26 104 0.28 0.25
129.6737 0.0007 99 0.26 0.23 118 0.29 0.28 112 0.25 0.27 100 0.28 0.23 122 0.27 0.29

3.5315 0.0002 108 0.23 0.17 119 0.26 0.18 100 0.21 0.14 133 0.25 0.21 116 0.24 0.20
7.0631 0.0004 85 0.24 0.16 122 0.25 0.26 78 0.24 0.16 106 0.26 0.21 104 0.25 0.21

70.1592 0.0005
133.2553 0.0007

[o:]
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Computation crashed

Computation crashed
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Fig. 2 on the right shows the acoustic pressure measured 5mm below lips from which point the power
spectral densities are evaluated. Peaks of flow velocity between VFs occur around the start and end of open
phase which we can see in the Fig. 2 (bottom left).
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Fig. 2: Example of results for vowel [e:], most damped case with ESLP = 2000Pa. Top left: displacement
of VFs in mediolateral direction from a node on the left and right VF medial surface (solid line) and from
minimal glottal width (dashed line). Bottom left: flow velocity from a node between VFs. Right: acoustic
pressure near the lips.

Fig. 3 shows comparison between two spectra of acoustic pressure near the lips for the vowel [o:]. One
can observe that the less stiff and more damped SLP (left graph) can generate harmonic peaks near the first
and second formant frequency while all the spectral peaks generated by stiffer and less damped SLP (right
graph) are lower and flattened. The first two formants lie close together at 550Hz and 700Hz. These two
formats are in the range measured by Merhaut (1972). Frequency shift was not observed among computed
variants.

4. Conclusion

Extensive sensitivity analysis was done to explore the influence of stiffness and damping of SLP on VFs
motion and produced sound for all Czech vowels. The developed 2D FE model of a human phonation
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Fig. 3: Power spectral densities of acoustic pressure at node near the lips for vowel [o:]. Left:
ESLP = 2000Pa with damping var. 3 according Fig. 1 h). Right ESLP = 3500Pa with damping var. 1.

enables to use different shapes of VTs and allows changing various model parameters such as stiffness
and damping. Results show that varying properties of SLP affect motion of VFs and resulting vibration
characteristics. Maximum width of glottis is most affected by these properties. Properties of SLP tissue
could vary due to pathology, for instance Reinke’s edema.
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