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Abstract: This contribution deals with the simple planar asymmetric pin-connected truss with 3 members. The
ways and methods of derivations and solutions according to theories of first and second order and other pos-
sible linearizations are shown (i.e. internal forces, reactions, elongations, stresses). There are applied linear
and nonlinear approaches and their simplifications via Taylor’s series. Finally, the errors of all approaches
are evaluated and compared.
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1. Introduction

Planar (i.e. 2D) truss structures appear to be the easiest ways of introducing, explaining and solving geo-
metrical and material nonlinearities; see Bažant and Cedolin (1991) and Frydrýšek (2016). In mechanics,
for small deformations, tasks of this type (displacements, strains and stresses etc.) can be solved according
to the simple first order (linear) theory or the more precise but more demanding second order (nonlinear)
theory. If the effects of deformations of the structure under loadings are negligible with respects to the
equilibrium of external and internal forces, first order analysis can be applied. The second order theory
usually leads to a nonlinear equation which can be solved via several numerical methods. However, there
are some possibilities for simplifying it, for example via Taylor’s series etc.

(a) Deformed and undeformed truss (b) Theory of first order (c) Theory of second order

Fig. 1: Simple (2D) statically determinate pin-connected truss.

This article presents the solution of a simple (2D) statically determinate pin-connected truss consisting of
three members, see Fig. 1a (i.e. the derivation according to the first and second order theories, possible
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simplifications, ways of solution, error estimation). The truss is loaded by the vertical force F. In the
mechanics of truss structures, there is a lack of information about error estimation of the theory of first
order, therefore we deal with this problems in this article.

2. Solution According to the Theories of First and Second Orders

Expressions are derived for the normal forces Ni [N], the axial stresses σi [Pa], the elongations ∆i [m] in
all members i = 1, 2 and 3 and the reactions RBX, RB, RC, see Fig. 1, according to the theory of the
small deformations for first and second order analyses, see Tab. 1 and 2. The given inputs are the force F,
length of the members Li [m], the modulus of elasticity Ei [Pa] of the material of the members, area of the
cross-sections Ai [m2] of the members. The angles α, β and γ are explained in Fig.1. The results of the
theory of second order is noted by upper subscript “*”.

Tab. 1: Derived expressions and solution - theory of first order (direct linear solution based on simple linear
statics); see Fig. 1(a,b).

∆i =
NiLi

ki
for i = 1, 2, 3 where ki = EiAi RB =

FL1 cos γ

L3
RC =

FL2 cosβ

L3
RBX = 0

N1 =
−F

sin γ + cos γ · tanβ
N2 =

−F

sinβ + cosβ · tan γ
N3 =

F

tanβ + tan γ

Tab. 2: Derived expressions - theory of second order (nonlinear solution); see Fig. 1(a,c).

∆∗
i =

N∗
i Li

ki
for i = 1, 2, 3 where ki = EiAi

N∗
1 =

−F

sin γ∗ + cos γ∗ · tanβ∗
Law of sines:

L1 + ∆∗
1

sinβ∗
=

L3 + ∆∗
3

sinα∗ RB
∗ =

F(L1 + ∆∗
1) cos γ∗

L3 + ∆∗
3

N∗
2 =

−F

sinβ∗ + cosβ∗ · tan γ∗
Law of sines:

L1 + ∆∗
1

sinβ∗
=

L2 + ∆∗
2

sin γ∗
RC

∗ =
F(L2 + ∆∗

2) cosβ∗

L3 + ∆∗
3

N∗
3 =

F

tanβ∗ + tan γ∗
Triangle rule: α∗ + β∗ + γ∗ = π RBX

∗ = 0

3. The Systems of Governing Equations and the Applied Numerical Methods

The first order theory leads to a set of linear equations the solution of which is presented in Tab. 1. We
use relations for ∆∗

i , N∗
i , i = 1, 2, 3, both laws of sines and the triangle rule from Tab. 2 (theory of second

order) and we obtain the system of six nonlinear equations for unknown deformation parameters ∆∗
1, ∆∗

2,
∆∗

3, α∗, β∗, γ∗. Let’s denote the left sides of this system as functions fi for i = 1, . . . , 6 and the vector of
unknowns x = (∆∗

1,∆
∗
2,∆

∗
3, α

∗, β∗, γ∗)T.

∆∗
1(tanβ∗ cos γ∗ + sin γ∗) + F L1/k1 = 0

∆∗
2(tan γ∗ cosβ∗ + sinβ∗) + F L2/k2 = 0

∆∗
3(tanβ∗ + tan γ∗)− F L3/k3 = 0

∆∗
1 sin γ∗ −∆∗

2 sinβ∗ + L1 sin γ∗ − L2 sinβ∗ = 0

∆∗
1 sinα∗ −∆∗

3 sinβ∗ + L1 sinα∗ − L3 sinβ∗ = 0

α∗ + β∗ + γ∗ − π = 0





fi(x) = 0 for i = 1, . . . , 6⇔ f(x) = 0 (1)

The system (1) we solve by the another type of linearization and by numerical methods for nonlinear
equations.

For the linearization we approximated left sides of equations in the system (1) by Taylor series in several
variables of order one. For example, we get the following approximation from the first equation:
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∆∗
1(tanβ∗ cos γ∗ + sin γ∗) + F L1/k1 ≈ ∆1(tanβ cos γ + sin γ) + F L1/k1+

+ ∆1
1

cos2 β
cos γ(β − β∗) + ∆1(− tanβ sin γ + cos γ)(γ − γ∗) + (tanβ cos γ + sin γ)(∆1 −∆∗

1)

and we obtain system of six linear equations



sin (β + γ) 0 0 0 ∆1
cos γ
cos β ∆1 cos (β + γ)

0 sin (β + γ) 0 0 ∆2 cos (β + γ) ∆2
cos β
cos γ

0 0 sin (β + γ) 0 ∆3
cos γ
cos β ∆3

cos β
cos γ

sin γ − sinβ 0 0 −(∆2 + L2) cosβ (∆1 + L1) cos γ

sinα 0 − sinβ (∆1 + L1) cosα −(∆3 + L3) cosβ 0

0 0 0 1 1 1



·




∆∗
1

∆∗
2

∆∗
3

α∗

β∗

γ∗




=




2∆1 sin (β + γ) + ∆1β
cos γ
cos β + ∆1γ cos (β + γ) + FL1

k1
cosβ

2∆2 sin (β + γ) + ∆2γ
cos β
cos γ + ∆2β cos (β + γ) + FL2

k2
cos γ

2∆3 sin (β + γ) + ∆3β
cos γ
cos β + ∆3γ

cos β
cos γ − FL3

k3
cosβ cos γ

(∆1 + L1)(sin γ + γ cos γ)− (∆2 + L2)(sinβ + β cosβ) + sin γ∆1 − sinβ∆2

(∆1 + L1)(sinα+ α cosα)− (∆3 + L3)(sinβ + β cosβ) + sinα∆1 − sinβ∆3

π




. (2)

The system of linear equations (2) is nearly similar to the theory of first order written in Tab. 1. For more
informations see Frydrýšek (2016).

The system (1) is solved by well known Newton method and by Broyden method. The Broyden method for
solving the system of nonlinear equations is based on the secant method, see Quarteroni (2006). The initial
approximation x0 = (0, 0, 0, α, β, γ)T is choosen. Lets denote the initial approximation of Jacobian matrix
as

Q0 =




tanβ cos γ + sin γ 0 0 0 0 0
0 tan γ cosβ + sinβ 0 0 0 0
0 0 tanβ + tan γ 0 0 0

sin γ − sinβ 0 0 −L2 cosβ L1 cos γ
sinα 0 − sinβ L1 cosα −L3 cosβ 0

0 0 0 1 1 1



.

The next approximations xk are computed in following three steps for k = 1, . . .

1. step: Find dk as the solution of the system of linear equation Qk−1dk = −f(xk−1).

2. step: Compute the next approximation xk = xk−1 + dk.

3. step: Compute the next matrix Qk = Qk−1 +
f(xk−1) · dkT

dkT · dk
.

Numerical results are calculated for inputs written in Tab. 3. Newton and Broyden iterative approaches
converged to the same results.

4. Conclusions

It is a fact that the planar truss structures appear to be the easiest ways of introducing, explaining and solving
geometrical and material nonlinearities (in this case, a simple pin-connected and statically determinate
truss of three members with variable length L1). The focus is on the theory of first and second order,
understanding, derivation and solution of linear/nonlinear problems and error estimation. Hence, from
calculated results, it is obvious the legitimacy application of the theory of second order which gives results
close to the reality. Some mentioned errors of the theory of first order are alarming for small length L1 or
for obtuse angles or in cases of buckling, see Fig. 2 and Tab. 3.
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Fig. 2: Relative errors

Tab. 3: Inputs and outputs

IN
P

U
T

S

E1 = 2.1× 1011 Pa, A1 = 5× 10−3m2,

E2 = 2.05× 1011 Pa, A2 = 4× 10−3m2,

E3 = 2× 1011 Pa, A3 = 2× 10−3m2,

F = 1× 106 N, L2 = 2 m, L3 = 2 m

L1 [m] 0.1 2 3.9

O
U

T
P

U
T

S T
he

or
y

of

fir
st

or
de

r α [rad] 1.5458 1.0472 0.2241

β [rad] 0.0500 1.0472 2.6934

γ [rad] 1.5458 1.0472 0.2241

T
he

or
y

of

se
co

nd
or

de
r α∗ [rad] 1.5473 1.0485 0.1176

β∗ [rad] 0.0500 1.0467 2.9060

γ∗ [rad] 1.5443 1.0464 0.1180

O
U

T
P

U
T

S×
1
06

T
he

or
y

of

fir
st

or
de

r N1 [N] -0.9991 -0.5774 4.0559

N2 [N] -0.0250 -0.5777 -4.3878

N3 [N] 0.0250 0.2887 -3.9545
T

he
or

y
of

se
co

nd
or

de
r N∗

1 [N] -0.9990 -0.5774 7.8482

N∗
2 [N] -0.0265 -0.5777 -8.0285

N∗
3 [N] 0.0265 0.2891 -7.7890

O
U

T
P

U
T

S×
10

6

T
he

or
y

of

fir
st

or
de

r

RB [N] 0.0012 0.5000 1.9013

RC [N] 0.9988 0.5000 -0.9013

T
he

or
y

of

se
co

nd
or

de
r

RB
∗ [N] 0.0013 0.5002 1.9766

RC
∗ [N] 0.9987 0.4999 -0.9755

However, there is not enough information about error estimations and comparative studies for the theories
of first and second order. Hence, this article fills the lack of information and gives to engineers some basic
ideas/concepts about possible errors/mistakes. There are other comparative studies of truss structures based
on the theory of probability and Monte Carlo Method too, see Frydrýšek and Jančo (2016).
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