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Abstract: We wish to compute potentials for molecular dynamics simulations around a crack tip in iron that
would be as precise as possible. The potentials will be constructed with help of our ab-initio electronic calcu-
lations code, that relies on the density functional theory and the pseudopotential approach. In this contribution
we describe an approach and its new implementation for generating and optimizing the so called environment-
reflecting all-electron pseudopotentials. A preliminary example is shown.
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1. Introduction

The electronic structure calculations represent a rigorous tool for predicting and understanding the prop-
erties of materials from first principles. Often, the calculations are based on the density functional theory
(DFT) (Martin, 2005) combined with the pseudopotential approach (Vackář and Šimůnek, 2003). A pseu-
dopotential is an operator that is used in place of the Coulombic potential of an atom core (which has a sin-
gularity at the atom centre) and has some properties that make the calculations feasible and more efficient.
The accuracy, stability or speed of the calculations are influenced by the choice of the pseudopotential.

Our research in this field is motivated by the interest in a detailed modelling of cracks in iron, where we wish
to compute potentials for molecular dynamics simulations around a crack tip that would be as precise as
possible. The potentials will be constructed with help of our ab-initio electronic calculations code (Vackář
et al., 2011; Cimrman et al., 2018), that relies on the pseudopotential approach.

This contribution is devoted to describing a new implementation of the approach developed in (Vackář,
1992) for generating and optimizing the so called environment-reflecting all-electron pseudopotentials. Our
group had been using the original fortran 77 software written by J. Vackář for many years, but recently we
decided to create a new code in Python to allow easier maintenance and enable future improvements, such
as generalizing the procedure to heavy atoms, where relativistic effects are not negligible. The new software
is a work-in-progress, so only a very limited example will be presented.

2. Density functional theory

In the density functional theory, the generally unsolvable many-particle Schrödinger equation is transformed
to the Kohn-Sham equations (Kohn and Sham, 1965) — an eigenvalue problem with unknown eigenvalues
(“energies”) εi and orbitals ψi(r) (functions of space coordinates r), in Hartree atomic units (as we use
throughout the text): (

−1

2
∇2 + Veff(r, ρ)

)
ψi(r) = εiψi(r) , (1)

where ρ =
∑
ni |ψi|2 is the charge density and ni are the occupation numbers. The charge density ρ

computed in this way is the same that would solve the original Schrödinger equation, and thus it has a clear
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physical interpretation, unlike ψi(r). The total effective potential Veff(r, ρ) can be written as

Veff(r, ρ) = Vion(r) + VH(r, ρ) + Vxc(r, ρ) , (2)

where Vion(r) is the ion potential, Vxc is the exchange-correlation potential describing the non-Coulomb
electron-electron interactions and VH is the electrostatic potential obtained as a solution to the Poisson
equation∇VH = 4πρ. In a single atom, Vion(r) can be expressed in radial coordinates as Vion(r) = −Z/r,
where Z is the charge of the atom core. The singularity at the atom centre (r = 0) causes problems in
numerical calculations and motivates replacing Vion(r) by a suitable pseudopotential.

3. Pseudopodential generation algorithm

Pseudopotentials can be generated for individual atoms, where the Schrödinger equation can be solved
numerically in spherical coordinates. The radial part of the Schrödinger equation can be written as

∂2

∂r2

(
rψxx

E,l

)
=

(
2 (E − V xx(r))− l(l + 1)

r2

)
rψxx

E,l(r) , (3)

where •xx is either •AE (all-electron calculation) or •PS (pseudopotential generation), and l is the orbital
quantum number.

In case of the all-electron calculation, (3) has a form of an eigenvalue problem for seeking the wave func-
tions ψAE

E,l (r) and the energies E. It can be solved for each l iteratively by the bisection method (bisecting
the values of E to get a correct number of nodes of ψAE

E,l (r)) in combination with an ODE solver. In case of
the pseudopotential generation, E is given and (3) is just an initial value problem, that can be solved by an
ODE solver. In both cases, the initial conditions are specified using asymptotic values (Čertı́k et al., 2013).

A pseudopotential needs to meet several criteria, often mutually contradictory. Those include:

• no singularity at r = 0;

• problem size reduction: non-valence electrons are treated with the core;

• ψPS
E,l(r) = ψAE

E,l (r) for r ≥ Rc with a given cut-off radius Rc;

• smoothness at r = Rc, softness, transferability, etc. (Vackář and Šimůnek, 2003).

Here we outline the algorithm proposed in (Vackář, 1992), that allows generating semilocal (l-dependent)
pseudopotentials as follows:

1. The screened pseudopotential V PS
E,l (i.e. including VH + Vxc) is considered as a linear combination

V PS
E,l =

4∑

j=0

ajFj(r) , (4)

where, for example,

F0(r) = 1 , F1(r) = e−(ρ1r)2 − 1 , F2(r) = (ρ2r)
2e−(ρ2r)2 ,

F3(r) = e−(ρ3r)2 − 1 , F4(r) = (ρ4r)
2e−(ρ4r)2 .

(5)

It is generated for the given energy E and orbital quantum number l.

2. For a given cut-off radius Rc, the following conditions have to hold for the screened pseudopotential
V PS
E,l and the all-electron potential V AE:

V PS
E,l (r) = V AE(r) , r ≥ Rc , (6)

∂i

∂ri
V PS
E,l (r) =

∂i

∂ri
V AE(r) , r = Rc , i = 1, 2 . (7)
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3. Using normalization constants such that ψPS
E,l(Rc) = ψAE

E,l (Rc), the following conditions hold:

∂
∂rψ

PS
E,l(r) =

∂
∂rψ

AE
E,l (r) , r = Rc , (8)

Rc∫
0

∣∣∣ψPS
E,l(r)

∣∣∣
2
r2 dr =

Rc∫
0

∣∣∣ψAE
E,l (r)

∣∣∣
2
r2 dr . (9)

The condition (9) corresponds to the charge conservation and makes the resulting pseudopotentials
“norm-conserving”, which implies transferability, i.e. use at different energies. In (Vackář, 1992) the
above conditions are replaced by a pair of equivalent conditions suitable for practical calculations due
to an improved numerical stability.

3.1. The algorithm

The outline of the complete algorithm is as follows:

1. For each l, compute the all-electron potential V AE(r), radial wave functions ψAE
E,l (r) and energies E

using (3) with •xx ≡ •AE.

2. For given E, l, compute the screened pseudopotential V PS
E,l (r):

• use a nonlinear solver to satisfy the conditions equivalent to (8)–(9) to obtain the coefficients
a0, a4;
• in each iteration of the nonlinear solver, compute ai, i = 1, 2, 3 directly from (6),
• after each change of an ai, i = 0, . . . , 4, ψPS

E,l(r) are computed using (3) with •xx ≡ •PS.

3. Unscreen V PS
E,l (r) by subtracting Vxc(r, ρ(ψ

PS
E,l)) and VH(r, ρ(ψ

PS
E,l)).

4. Post-process into a form suitable for practical computations with a given software.

3.2. Optimization

The pseudopotential basis functions Fj(r) in (4) can have several free parameters, such as ρi, i = 1, 2, 3, 4
in (5). Those parameters can be chosen in a way that is optimal w.r.t. some selected criterion, such as
minimizing the “length” of Fourier image of the pseudopotential and of the corresponding wavefunction,
minimizing the integrated curvature, minimizing the higher terms in Taylor expansion, and/or simply min-
imizing the depth of the pseudopotential. For this purpose, the algorithm 3.1. is embedded into an outer
optimization loop. However, the relation between optimization criteria applied for an atom during pseu-
dopotential construction and the resulting quality of the pseudopotential applied for the structure calculation
is not known. The experience confirms that a simple “aesthetic” criterion (a nice smooth curve) belongs
among very good ones, related to the results. In the example below we use the “softness” criterion:

∣∣∣∣
∂2

∂r2
V PS
E,l (r)

∣∣∣∣
r=0

= min . (10)

4. Software and a preliminary example

Our new software for generating and optimizing pseudopotentials is currently under development. The
logic of the application is written in Python to allow an easy maintenance and future enhancements.

The main script allows full control over the computation using a command line interface. This allows an
easy algorithm selection and exploratory calculations. Various components of the calculation, such as the
grids, solvers, formulas, or visualizations, are implemented as plugins that can be simply added, modified
or removed. For the optimization and root finding, the solvers from SciPy (Jones et al., 2019) can be used.

As a very preliminary example we show a result concerning the pseudopotential generation and optimization
for the nitrogen atom. This atom has 7 electrons in three sub-shells 1s: 2, 2s: 2, 2p: 3, with energies
E1s2 ≈ −14.01, E2s2 ≈ −0.676, E1s2 ≈ −0.266. Note that the exact values depend on the choice of
Vxc and other considerations. In Fig. 1 a comparison of V AE(r) with V PS

E,l (r) is shown, for the energy
E ≈ −0.676 and l = 0. We can see that the “optimized” (w.r.t. (10)) pseudopotential V PS

1 is shallower
when compared to the initial V PS

0 , and the curve is nice and smooth, adhering to the “aesthetic” criterion.

79



Fig. 1: The comparison of V AE(r) with V PS
E,l (r) for the nitrogen atom, E ≈ −0.676, l = 0. The V PS

0 curve
corresponds to the initial values of the optimization parameters ρi, while V PS

1 to the final values.

5. Conclusion

We described some aspects of generating and optimizing pseudopotentials in density functional theory
based electronic structure calculations and presented a preliminary example calculated with our new Python
implementation. The code will be further improved to work also with the relativistic Dirac equation, en-
abling calculations with heavy atoms. Ultimately, accurate site-specific potentials for molecular dynamics
simulations of a crack tip in iron will be generated with the help of this code in combination with our
electronic structure calculations code.
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