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Abstract: This paper examines a linear-quadratic stabilization system for a canard-controlled missile. An
analytical method for selecting the weighting elements of the gain matrix in the feedback loop is also proposed,
eliminating the need for an iterative solution to the Riccati equation. The proposed solution was evaluated
using simulation tests.
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1. Introduction

The nonstationary nature of the missile airframe determines the changes in the characteristics of the en-
tire guidance loop. In extreme cases, this may compromise its stability. To compensate for this highly
undesirable effect, a stabilizing device is installed onboard the missile. Control can be provided by any reg-
ulator that is able to track the set trajectory to a specified level of accuracy. In this paper, a linear-quadratic
regulator (LQR) will be considered for the performance of this function.

x

α

θ 
V

δ

Fig. 1: Canard-controlled missile configuration

For linear time-invariant (LTI) systems,
the weighting coefficients of an LQR
can be easily determined by means of
an algorithm. The problem becomes
more complex when the analyzed sys-
tem contains nonlinear and nonstation-
ary features. In such cases, when solving
the Riccati equation to find the coeffi-
cients of the gain matrix in the feedback
loop, numerical computation methods
are commonly applied to a set of static
coefficients describing the state of the
system in a finite time horizon. The main
difficulty with this approach is the re-
quirement for computations to be carried
out in real time (Çimen, 2008). There are
also certain complications related to the
application of numerical methods, such
as the bad conditioning of the matrices.

This paper proposes an analytical method
for selecting the weighting elements of the gain matrix, eliminating the need for an iterative solution to the
Riccati equation. The method is applied to a cruciform canard-controlled, roll-stabilized missile (Fig. 1).
The motion of this type of missile can be separated into two perpendicular channels, allowing the control
problem to be treated as planar in each.
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2. Airframe dynamics model

For controller design purposes, the dynamics of the airframe in the control plane can be approximated by
the linearized vector-matrix system of equations

ẋ = Ax + Bδ, y = Cx +Dδ, (1)

where

x =

[
α
ω

]
, A =

[
−a1 1
−a2 −a3

]
, B =

[
0
b

]
, C =

[
0 1

]
, D = 0. (2)

In expressions (1)-(2), the symbols have the following meaning: α is the angle of attack, ω is the angular
rate of the airframe, and δ is the canard deflection angle. The entries of matrices A and B have the following
forms:

a1 =
ρV

2m
ScL, a2 =

ρV 2

2I
SlcαM , a3 =

ρV

2I
Sl2cωM , b =

ρV 2

2I
SlcδM , (3)

in which ρ is the air density, V is the missile velocity, m is the missile mass, I is the missile moment
of inertia, S is the characteristic surface, l is the characteristic linear dimension, cL is the aerodynamic
coefficient of the lift force, and cωM , cαM and cδM are coefficients of the aerodynamic moments related to the
damping, the airframe, and the canards, respectively.

3. LQR controller design

For the LQR, the controller settings are determined based on a quadratic cost function in the form

J =

∫ ∞

0

(
xTQx + uTRu

)
dt, (4)

where Q = QT and R = RT are weighting parameters for the state vector x and control vector u. To
simplify the consideration further, the inertia of the canard actuator is ignored; i.e., it is assumed that u = δ.
To determine the gain matrix K of the feedback loop, it is necessary to find the matrix P satisfying the
Riccati equation

ATP + PA−PBR−1BTP + Q = 0, (5)

which in general cannot be done analytically (Çimen, 2008). However, in certain situations the solution can
be obtained, providing adaptable feedback from the time-variable state of the system.

Let us assume the matrices P, Q and R to be

P =

[
p11 p12
p21 p22

]
, Q =

[
q1 0
0 q2

]
, R =

[
1
]
, (6)

where q1 and q2 are positive-defined constants (Erdem and Alleyne, 2004), hence the gain matrix K is equal
to

K = R−1BTP =
[
bp21 bp22

]
. (7)

The expanded form of Eq. (5) takes the form
[
−a1p11 − a2p21 −a1p12 − a2p22
p11 − a3p21 p12 − a3p22

]
+

[
−a1p11 − a2p12 p11 − a3p12
−a1p21 − a2p22 p21 − a3p22

]
+

−b2
[
p12p21 p12p22
p21p22 p22p22

]
+

[
q1 0
0 q2

]
=

[
0 0
0 0

] (8)

By summation of the matrices in Eq. (8), comparison of the corresponding terms and rearrangement, noting
moreover that p12 ≡ p21, the following system of equations is obtained:





−2a1p11 − 2a2p21 + q1 = b2p21p21
p11 − (a1 + a3)p21 − a2p22 = b2p21p22
2p21 − 2a3p22 + q2 = b2p22p22

(9)
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Multiplying both sides of the second equation in (9) by 2 and summing the equations in (9), we have

(1− a1)p11 + (1− a1 − a2 − a3)p21 + (−a2 − a3)p22 = b2(p21 + p22)
2 − q1 − q2. (10)

Values of q1 and q2 can be freely chosen. Let assume that

(p21 + p22)
2 − ς2

b2
= 0 where ς2 = q1 + q2. (11)

The solutions for Eq. (11) are:

p21 =
ς

b
− p22 and p21 = − ς

b
− p22. (12)

Using Eq. (12) to solve the system of equations (9), by Eq. (7), eight pairs of entries for the matrix K
can be obtained. Three of them give unstable solutions (with positive feedback), and four other lead to
inappropriate quality of the system response, cf. Fig. 2. These solutions should be rejected. Based on
analysis of the values of the angular rate ω obtained as step responses of the airframe to commanded fin
deflections, in our further considerations the gain matrix K will be taken to have the form

K =



− 1

b(1− 2a1)

[
a1(a1 − a2 + a3 − b) + a2 +

√
Υ
]

−ς +
1

b(1− 2a1)

[
a1(a1 − a2 + a3 − b) + a2 +

√
Υ
]




T

(13)

where
Υ = (a1b− a2)2 + [a1(a1 + a3)− a1a2]2 − 2(a1 − a2 + a3)(a

2
1b− a1a2)+

+
(
1
2 − a1

)
(b2 + 4a1a2b)

(14)

and ς is a constant coefficient chosen experimentally.
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Fig. 2: Step responses of the system

Now, the control law is defined as

uLQR = (Nu + KNx)u−Kx, (15)

where [
Nx

Nu

]
= Ω−1

[
0
1

]
(16)

and

Ω =

[
A B
C D

]
. (17)

4. Results and discussion

Fig. 3 gives the selected step responses of the air-
frame obtained from a simulation test with the ex-
emplary coefficients a1 = 5 s−1, a2 = 2 350 s−2, a3
= 10 s−1, b = 420 s−2, ς = 0.96 and for flight veloc-
ity V = 900 m/s. It is assumed that the missile has
no thrust during the tests. The following parameters
were assumed in the simulations: m = 100 kg, I =
35 kg·m2, S = 0.67 m2, l = 1.36 m, |δ| ≤ 0.35
rad. The values of geometrical and mass coeffi-
cients and of aerodynamic forces and moments re-
quired for the Eqs. (3) were determined analytically
(Kurow and Dołżanski, 1964). The value of the pa-

rameter ς was chosen numerically (cf. Fig. 4). The fourth-order Runge-Kutta numerical integration method
was used for the derivation of approximating differential equations for the elements of the studied systems.
The simulation time was ts = 1 s.
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The use of the proposed stabilization system with an LQR algorithm in the autopilot of an anti-aircraft
missile would improve the quality of control by stabilizing the angular rate of the airframe. The system’s
transitional processes would become shorter and smoother, leading to better operating conditions for the
seeker installed in the missile and more effective guidance towards an aerial target. Clearly, the approach
gives rise to certain technical and implementation problems. However, discussion of these issues is beyond
the scope of this work.
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Fig. 3: Angular rates (up) and normal accelerations (below) of the airframe
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Fig. 4: Angle of attack (up) and canard deflection (below) histories for exemplary values of ς
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