doi: 10.21495/71-0-61

25th International Conference

ENGINEERING MECHANICS 2019
Svratka, Czech Republic, 13 — 16 May 2019

A=)

01

N

ON TUNING OF FINITE ELEMENT LOAD BALANCING FRAMEWORK

M. Bosansky ", B. Patzak ™

Abstract: Many engineering problems are extremely demanding to solve even on recent hardware.
Numerical solutions of these problems on parallel computers can significantly reduce computational time by
performing selected tasks concurrently. This paper deals with tuning up the parallel load balancing
framework of the finite element software, which is based on domain decomposition paradigm for distributed
memory model. The paper describes the technique to determine the actual weights comparing computational
performance of individual processing units. These weights are fundamental inputs for mesh (re)partitioning
that has to be performed at the beginning of the simulation and whenever the load imbalance is significant.
The capabilities and performance of the proposed technique are evaluated on the benchmark problem and
discussed.

Keywords: Parallelization, Load balancing, Distributed memory, Message passing, Domain decomposi-
tion.

1. Introduction

The idea of any parallel algorithm is partitioning of the problem into a set of smaller tasks, that can be solved
simultaneously. The partitioning of the problem can be fixed in time and this case is known as so-called
static load balancing. On the other hand, when the partitioning of the problem can change to reflect the
evolving workload of individual tasks, one speaks about dynamic load balancing, see Schloegel, Karypis,
Kumar (2002). The scalability of the solution process is one of the most important characteristics of any
parallel algorithm.

The ideal scalability is difficult to obtain due to overhead cost of the parallel algorithm, as in reality, it is
almost impossible to partition the problem into a set of independent tasks. In reality, synchronization and
communication between tasks is necessary and often some parts of the problem are essentially sequential.
To obtain optimal scalability, the load has to be distributed between processing units proportionally to their
processing power. Other factors that can be taken into account include, for example, the communication
bandwidth between nodes, available memory, etc.

The Finite Element Method (FEM) has become a widely used tool for solving engineering problems de-
scribed by systems of partial differential equations. In FEM the differential equations are converted to the
algebraic system of equations by using variational methods. In many cases the resulting system of equations
is nonlinear, caused by various sources of non-linearity. In structural mechanics, the non-linearity typically
originates from geometrical or constitutive relations. Nonlinear problems could not be solved directly, an it-
erative solution algorithm has to be employed, typically based on different variants of Newton method. The
problem is solved in a series of load or displacement increment controlled steps in which the equilibrium
state is iteratively obtained.

When solving the real problem on the parallel computer, the load balance can change during the solution.
The first source of imbalance originates from the character of the problem. For example, in nonlinear
problems, the transition from initial elastic material response to nonlinear regime is often associated with

Ing. Michal Bosansky: Czech Technical University in Prague, Faculty of Civil Engineering, Thakurova 7, 166 29 Praha 6; CZ,
michal.bosansky @fsv.cvut.cz

Prof. Dr. Ing. Botek Patzak: Czech Technical University in Prague, Faculty of Civil Engineering, Thdkurova 7, 166 29 Praha
6; CZ

sk

61
61



increased computational cost and this transition is often associated only to certain regions of overall do-
main. The second source of load imbalance includes external factors, which can change performance of
individual processing nodes or communication network. This typically happens in non-dedicated cluster
environments, where processing nodes and communication infrastructure is shared between users. In both
cases, the gradual grow of imbalance can have significant effect on performance and on scalability.

The only way how to reflect growing imbalance is to adaptively redistribute work between processing units
to restore load balance and thus to ensure optimal use of resources. The load imbalance can be detected by
monitoring the time on individual processing units required to perform allocated work. The differences in
processing time indicate imbalance. After imbalance is detected, the decision whether to restore the load
balance or whether to continue has to be taken, This can be a complex task, as the load redistribution may
be in fact a very complex problem with non negligible time requirements. The cost of load re-balancing
may be higher than the cost of continuing further with slight load-imbalance. All these aspects have to be
considered and are, unfortunately, problem and implementation specific.

2. Parallelization strategy in FEM

The idea of parallelization strategy in FEM is based on the domain decomposition paradigm. In general,
two dual partitioning techniques for the domain decomposition can be recognized, see Krysl and Bittnar
(2001). In this paper, the node-cut partitioning approach is used, where the cut dividing of the mesh into
the partitions runs through nodes (and thus through element boundaries). The nodes on mutual partition
boundaries are so-called shared nodes, the nodes inside partitions are so-called local nodes. The node-cut
partitioning scheme can be interpreted as mesh decomposition using cuts passing trough shared nodes of
the mesh without crossing any element, see Fig. 1. The cut strategy leads to duplication of the shared nodes
between partitions.

o local node
shared node

Fig. 1: Node cut partitioning

In the subsequent parts of the paper, we will consider that problem is nonlinear and is iteratively solved in
a series of loading steps. The load imbalance is monitored by measuring the computational time required
to process assigned work (process given partition). In a ideal case the individual times should be equal,
indicating that the work load is ideally balanced. When imbalance is detected, the work (expressed in
terms of individual elements) has to be redistributed to reflect actual performance of individual processing
nodes. Individual elements have assigned weights, reflecting the relative computational costs. These de-
pend on element type, material state (elastic, plastic, etc.). These weights are typically obtained in advance
from measurements on estimated. Also the actual processing power of individual processing units has to
be determined. The load re-balancing process in this paper is based on re-distributing the computational
work proportionally to performance of individual processing units. In principle, additional factors includ-
ing available communication band-with between individual processing units or available memory can be
taken into account. Any load balancing should not only distribute the work according to processing pow-
ers, but also try to minimize the communication cost between individual processing units. In FEM, this
means that the cuts between partitions (number of shared nodes) should be minimized. Failing to meet the
secondary criteria can significantly impact overall performance, as the cost of communication (in terms of
time required) is much higher than cost of computation. The load re-balance should also try to minimize
reallocation of elements as possible to minimize the communication costs.

62



3. Mesh partitioning

The mesh partitioning is itself a complex problem. In this work, the ParMETIS library is used, see Walshaw
(2007). The library provides parallel load balancing and rebalancing algorithms for general unstructured
graphs and meshes, based on the parallel multilevel k-way graph-partitioning. The library allows to take
into account the weights expressing the computational performance of individual processing nodes, as well
as weightse expressing different computational requirements of individual elements. The determination of
the weights of individual processing units is a subject of this paper. The appropriate weights are prerequisite
for optimal load balancing.

3.1. Determination of weights

In this work, the approach to determine the actual processing weights of individual processing units is
based on formulation and implementation of series of so-called micro-benchmark tests, that can be run on
individual processing units at very low cost. The individual micro-benchmarks are procedures performing
selected linear algebra tasks. The performance is estimated by measuring the computational times required
to execute individual micro-benchmarks. The weighted sum of individual times is evaluated on each pro-
cessing unit and from this the relative computational performances are determined. The micro-benchmarks
are formulated in a way, that should represent typical operations during the standard solution process. In
the case of this work related to FEM, the micro benchmarks include procedures solving small linear system
of equations using Gauss elimination, numerical integration of simple polynomial, etc.

At present, this approach is implemented only to determine the processing weights for static load balancing.
The results are presented and discussed in next section. The straight forward extension towards dynamic
load balancing is the subject of ongoing work.

4. Example

The proposed approach has been evaluated using a benchmark problem of 3D finite element model of a
nuclear containment reactor. The benchmark problem (marked as Jete250k) consists of 87k nodes, 959k
tetrahedral elements with linear interpolation. The total number of equations is approximately 250k. The
linear elastic response of structure subjected to self-weight has been analyzed. The problem has been solved
in parallel on the two workstation with different performances. This setup has been chosen by purpose, to
demonstrate the role of using appropriate processing weights. The first one (running Ubuntu 16.04 OS) with
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz processor with fourth cores consists of two logical processors
per core. The second workstation has Intel® Core™ i3-2370M CPU @ 2.40GHz processor with two cores
consisting of two logical cores. Workstations have been connected by faculty network on 100 Megabytes.
Testing machines have 15GiB and 8GiB of system memory. The problem has been solved using object-
oriented FEM code OOFEM, see Patzak (2011). The iterative linear equation solver from PETSc library
has been used with block Jacobi preconditioner, see Belay (2001). The obtained results are presented in
Fig. 2 and compared to results obtained with static load balancing using the equal processing weights. The
obtained results confirm expected fact that when appropriate weights are used, the better performance is to
be obtained.

5. Conclusions

The presented contribution deals with determination of actual processing weights of individual processing
units. The processing weights are obtained by running a series of micro-benchmark procedures on each
processing unit, that characterize typical operations of the problem under interest. The obtained weights
are important inputs for any load (re)balancing algorithm. Particularly, in nonlinear problems, which are
solved iteratively in a series of load increments, the initial load balance can be perturbed during the solution
and optimal performance can only be obtained by load re-balancing that should take into account actual
processing weights among other factors. The paper illustrates the importance of using actual processing
weights on evaluating the performance on benchmark problem of linear elastic analysis of complex 3D
structure with static load balancing.

63



Intel i3 (4 computing units) and Intel i7 (8 computing units) - Jete250k
220

T T T
Static load balancing - average execution time —+—
Static load balancing with processors weights parameters - average execution time —*—
Static load balancing - minimal execution time
210 F Static load balancing - maximal execution time
Static load balancing with processors weights parameters - minimal execution time
Static load balancing with processors weights parameters - maximal execution time
200
5
g 190
£
=
2
=1
S 180
9]
x
o]
170
e
g
160 T
150 L L L L L
2 3 4 5 6 7 8

number of threads
Fig. 2: Execution times using the actual estimated processing weights compared to uniform processing
weights.

Acknowledgments

This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No.
SGS16/038/0OHK1/1T/11 - Advanced algorithms for numerical modelling in mechanics of structures and
materials. The authors acknowledge the support of the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16_.019/0000765 ~Research Center for Informatics”.

References
Schloegel K, Karypis G, Kumar V., (2002) Parallel static and dynamic multi-constraint graph partitioning. Concurr
Comput Pract Exper, 14(3) pp. 27-58

Krysl P, Bittnar Z. (2001) Parallel explicit finite element solid dynamics with domain decomposition and message
passing; deal programming scalability Comput Struct, 79(3):345-60
Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J. (1996) MPI: the complete reference. Boston: MIT Press

Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, Mclnnes LC, et al. (2001) PETSc Web page
http://www.mcs.anl.gov/petsc.

Patzak B. (2011) OOFEM project home page http://www.oofem.org.

Walshaw C. (2007) Parallel multilevel graph-partitioning software — an overview Magoules F, editor. Mesh partitioning
techniques and domain decomposition techniques. Civil-Comp Ltd., pp. 27-58

Boman E, Devine K, Fisk LA, Heaphy R, Hendrickson B, Leung V, et al. (1999) Zoltan home page
http:/fwww.cs.sandia.gov/Zoltan

64



