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Abstract: In this work, the research results of heating up rate influence on S355J2G3 steel austenitization temperatures 

are presented. Dilatometric tests were carried out on the thermal cycle simulator Smitweld TCS1405 for a heating speed 

ranging from 1 to 150 0C s-1. On the basis of the achieved results, the functions associating start and end temperatures of 

austenitization with the heating up speed are proposed. 
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1. Introduction 

S355J2G3 steel is widely used as a material for steel structures, elements of which are often joined with 

welding technology. Technologies based on the action of a concentrated mobile heat source, which is 

welding, are characterized by high heating rates of the material. The speed of heating up can significantly 

affect the transformation kinetics of heated steel during austenitization (Elmer et al., 2003, Danon et al., 

2003, Miokovic et al., 2004, Winczek et al., 2017), as well as during heating from the quenching state - 

tempering (Pacyna et al., 1997). The speed of heating may have an influence on start and end temperature 

values of austenitization, as well as duration of austenitization (Piekarska, 2007). The austenitizing time 

determined by the welding thermal cycle in the form of a characteristic peak is short, which in connection 

with the increase in the temperature range of austenite homogeneity (undissolved carbides inhibit grain 

growth), does not favor the process of austenite homogenization (Piekarska et al., 2012). 

2. Experimental research 

The tests on the heating rate influence on the start and end of austenitization temperatures were carried 

out on the Thermal Cycle Simulator Smitweld 1405 (Fig.1) for the heating speed ranging from 1 to 

150 0C s-1. The chemical composition of researched steel is shown in Table 1. 

  

Fig. 1: Thermal Cycle Simulator Smitweld 1405 and dimensions of sample. 
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Tab. 1: Chemical composition of steel S355J2G3. 

Chemical composition % 

C Mn Si P S Al Cr Ni Mo V Nb 

0.18 1.42 0.40 0.018 0.032 0.050 - - - - - 

For each heating speed, at least 5 dilatometric tests were made. It allowed one to determine temperature 

average values Ac1 and Ac3, which are presented in Table 2. 

Tab. 2: Average temperature values Ac1 and Ac3. 

VH [0C/s] 1 2 5 10 20 30 40 50 60 80 90 100 120 150 

A1 [0C] 750 750 754 758 760 765 770 774 780 780 780 780 780 780 

A3 [0C] 870 870 884 890 896 900 905 908 910 910 910 910 910 910 

3. The analysis of dilatometric experiment results 

For the heating speed above 60 0C/s, the temperature of the beginning of austenitization does not change 

and comes to 780 0C. For the heating speed below 60 0C/s the temperature of the beginning of 

austenitization rises with the increase of heating speed VH. This dependence can be described by the Hoerl 

regression (1) equation or linear function (2): 

     s/CVforCands/CVforVabVA HH

c

H

V

Hc
H 000
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For the whole scope of heating speed, the highest correlation gives the approximation by logistic model: 

     HHc cVexpb/aVA  11
 (3) 

The parameters of equation (1-3), correlation coefficients and standard errors of particular models are 

collated in Table 3. The comparison of regression models Ac1(VH) with the research results is presented in 

Fig. 2. 

Tab. 3: The parameters of equation (1-3), correlation coefficients and standard errors. 

Model a b c Correlation 

coefficient 

Standard 

error 

Hoerl (1) 749.45743 1.0005403 0.0015321262 0.996 1.147 

Linear (2) 0.48351902 750.62143 - 0.9934 1.3098489 

Logistic (3) 782.26369 0.044808365 0.027936958 0.989 1.956 

In the case of determining temperature AC3 in the function of heating speed, the following equations can 

be used models: Gompertz (4), Richards (5), MMF (6), Hoerl (7), Rational (8) and shifted power method 

(9): 

   ))cVbexp(exp(aVA HHc 3
 (4) 

   d/

HHc ))cVbexp(/(aVA 1

3 1   (5) 

   )Vb/()cVab(VA
d

H

d

HHc 3
 (6) 

    cH

V

Hc VabVA H3
 (7) 

  s/CVforCands/CVfordVcV/()bVa(VA HHHHHHc

0002

3 60910601   (8) 

     s/CVforCands/CVforbVaVA HH

c

HHc

000

3 6091060   (9) 

 

926 Engineering Mechanics 2018, Svratka, Czech Republic, May 14 –17, 2018



 

 3 

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

VH 0C/s , K/s

745

750

755

760

765

770

775

780

785

790

T
em

p
er

at
u
re

 0
C

Linear

Hoerle

Logistic

experiment

 

Fig. 2: Comparison of regression models AC1(VH) with the experimental results. 

The parameters of equations (4-9), correlation coefficients and standard errors of particulars models are 

collated in Table 4. The comparison of regression models Ac3(VH) with the experimental results is 

presented in Figure 3. 

Tab. 4: The parameters of equation (4-9), correlation coefficients and standard errors. 

Model a b c d Correl. 

coeffic. 

Stand. 

error 

Gompertz (4) 909.86216 -3.0733604 0.060778747 4.6436922 0.9899 2.275 

Richards (5) 909.80572 -1.4388623 0.064051358 - 0.9892 2.46 

MMF (6) 864.03404 9.5280843 914.6467 0.99363489 0.993 1.957 

Hoerl (7) 866.35732 0.99991737 0.012512283 - 0.991 2.123 

Rational (8) 861.39767 193.80035 0.21526127 -5.4266198·10-5 0.995 1.953 

Shifted power (9) 861.00704 -0.91517729 0.013384953 - 0.994 1.964 
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Fig. 3: Comparison of AC3(VH) regression models with the experimental results: a) equations (4–7),  

b) equations 8 and 9. 
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Despite the high correlation coefficients of the models (4-7), the curves for the heating speed from the 

range of 30 °C/s <VH <80 °C/s significantly differ from the empirical values (Fig. 3a). Therefore, it is 

more useful to adopt the rational function (8) for the range VH < 60 oC or the generalized linear model 

(GLM) - shifted power (9) – Fig. 3b. 

CHT (Continuous Heating Transformation) diagram of S355J2G3 steel is presented in Fig. 4. 
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Fig. 4: CHT (Continuous Heating Transformations) diagram of S355J2G3 steel. 

4.  Conclusions 

From the analysis of particular models, it arises that for the heating speed below 60 oC/s, the best 

temperature approximation of the initial temperature of austenitization is given by function (1), but the 

linear function (2) provides a sufficient and more convenient application. The temperature of the end of 

austenitization is best described by rational function (6). For the heating speed above 60 oC/s, no increase 

in the start and end temperatures of austenitization was observed with the increase of the heating speed. 
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