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Abstract: The paper relates to the fluid forces acting on the journal of the slide bearing. These forces can be 

calculated using the Reynolds equation. The development of actively controlled journal bearings with 

piezoactuators requires the model of the controlled system in the form of formulas that allow respecting the 

influence of all parameters. The paper provides a simplified solution to the Reynolds equation that justifies 

the stiffness matrix in the equivalent model suggested by Muszynska with the use of springs and dampers. 
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1. Introduction 

An analysis of the behavior of active vibration control systems requires describing a controlled system 

with the use of the linear equations that are suitable for the calculation of the system transfer functions 

and the controller adjustment (Tůma et al., 2017). For this purpose, the approximate model proposed by 

Muszynska is sufficient. This analysis, however, is aimed at the calculation of the stiffness matrix of the 

motion equation with the use of the Reynolds equation to estimate the behavior of the journal bearing at 

the extra high rotational speed. Instead of numerical integration of the Reynolds equation, the derivation 

of the formulas to calculate the model parameters is used.  

2.  

The bearing journal can be considered as a rigid body rotating within the bearing housing at an angular 

velocity Ω. For simplicity, it is assumed that the rotation axis does not change its direction. Fluid forces 

are caused by the hydrodynamic pressure generated in the oil film, whose total mass relative to the 

journal and rotor is negligible. The oil pumped by the rotating journal surface produces an oil wedge that 

lifts up the bearing journal so that it does not touch the inner walls of the housing. The coordinate system 

of a plain cylindrical journal bearing is shown on the left side in Fig. 1. The planar motion of the bearing 

journal at the x and y coordinates can be described by two motion equations arranged into a matrix 

equation 

[
𝑀 0
0 𝑀

] [
�̈�(𝑡)

�̈�(𝑡)
] + [

𝐵𝑋𝑋 𝐵𝑋𝑌

𝐵𝑌𝑋 𝐵𝑌𝑌
] [

�̇�(𝑡)

�̇�(𝑡)
] + [

𝐶𝑋𝑋 𝐶𝑋𝑌

𝐶𝑌𝑋 𝐶𝑌𝑌
] [

𝑥(𝑡)

𝑦(𝑡)
] = [

𝐹𝑋(𝑡)

𝐹𝑌(𝑡)
] (1) 

where 𝑀 is a mass of the rotor, 𝐹𝑋 and 𝐹𝑌 are forces acting on the journal, and 𝐶 and 𝐵 are the stiffness 

and damping coefficients, respectively. The system is described by two motion equations, and therefore 

the total order of the system is four. This system may become unstable. 

The theory of hydrodynamic bearing is based on a differential equation derived by Osborne Reynolds. 

Reynolds equation is based on the following assumptions: The lubricant obeys Newton’s law of viscosity 
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and is incompressible. The inertia forces of the oil film are negligible. The viscosity 𝜇 of the lubricant is 

constant and there is a continuous supply of lubricant. The effect of the curvature of the film concerning 

film thickness is neglected. It is assumed that the film is so thin that the pressure is constant across the 

film thickness. The shaft and bearing are rigid.  

 

Fig. 1: A cross-section of a hydrodynamic bearing. 

3. Reynolds equation 

Furthermore, it is assumed that the thickness ℎ of the oil film depends on the other two coordinates, 

namely the coordinate 𝑧 along the axis of rotation and the location on the perimeter of the journal which 

is described by the angle 𝜃 as is shown on the right side in Fig. 1. If the radius of the bearing journal is 

equal to 𝑅, then the most general version of Reynolds equation for calculation the of the oil pressure 

distribution 𝑝(𝜃, 𝑧) is as follows (Dwivedy et al., 2006) 

1

𝑅2

𝜕

𝜕𝜃
(ℎ3

𝜕𝑝

𝜕𝜃
) +

𝜕

𝜕𝑧
(ℎ3

𝜕𝑝

𝜕𝑧
) = 6𝜇Ω

𝜕ℎ

𝜕𝜃
+ 12𝜇

𝜕ℎ

𝜕𝑡
 . (2) 

During operation, the journal axis shifts from the centre of the bearing bushing to the distance of 𝑒, called 

eccentricity, which is related to a radial clearance 𝑐. Variable is called an eccentricity ratio 𝑛 = 𝑒 𝑐⁄ . The 

film thickness as a function of 𝜃 is as follows 

ℎ = 𝑐(1 + 𝑛 cos 𝜃) (3) 

The oil film moves in adjacent parallel layers at different speeds, and shear stress results between them. 

The oil layer at the surface of the journal moves at the peripheral velocity of the journal while the oil 

layers at the surface of the bearing bushing don’t move (at zero velocity). The surface of the journal 

moves at a velocity of  𝑈 = 𝑅Ω. Reynolds equation will be solved for the steady state and independence of 

the pressure distribution on the coordinate of 𝑧 

𝑑

𝑑𝜃
[ℎ3

𝑑𝑝

𝑑𝜃
] = 6𝜇𝑈𝑅

𝑑ℎ

𝑑𝜃
 . (4) 

On double integrating, see (Dwivedy et al., 2006), we get 

𝑝𝜃 =
6𝜇𝑈𝑅

𝑐2

𝑛(2 + 𝑛 cos 𝜃)

(𝑛2 + 2)(1 + 𝑛 cos 𝜃)2
+ 𝑝0 =

6𝜇𝑈𝑅

𝑐2
𝛽(𝜃, 𝑛) + 𝑝0 (5) 

where 𝑝0 is the second integration constant without any effect on the force excited by the oil pressure. 

The first integration constant was selected to meet the boundary condition  𝑝𝜃(0) = 𝑝𝜃(2𝜋) as is described 

by Dwivedy et al.. The oil pressure distribution on the journal for 𝑛 = 0, 0.1, ⋯ , 0.9 is shown in Fig. 2. 

The forces acting on the journal in the center of gravity along the bearing length of 𝐿 can be calculated for 

the direction of the line of the centers and the perpendicular direction. Force in the direction of the line of 

centers is denoted as direct force 𝐹𝐷 while force which is perpendicular to the line of centers is denoted as 

quadrature force 𝐹𝑄. Both these forces balance the gravity force 𝐺 as is shown in Fig. 1. 

𝐹𝐷 = ∫ 𝑝𝜃𝑐𝑜𝑠(𝜋 − 𝜃)𝐿𝑅 d𝜃
2𝜋

0

=
6𝜇𝑈𝑅2𝐿

𝑐2
∫ 𝛽(𝜃, 𝑛) cos(𝜋 − 𝜃) d𝜃

2𝜋

0

=
6𝜇𝑈𝑅2𝐿

𝑐2
𝛽𝐷(𝑛) 

𝐹𝑄 = ∫ 𝑝𝜃 sin(𝜋 − 𝜃) 𝐿𝑅 d𝜃
2𝜋

0

=
6𝜇𝑈𝑅2𝐿

𝑐2
∫ 𝛽(𝜃, 𝑛) sin(𝜋 − 𝜃)  d𝜃

2𝜋

0

=
6𝜇𝑈𝑅2𝐿

𝑐2
𝛽𝑄(𝑛) .

 (6) 

A force factor that multiplies the dimensionless functions 𝛽𝐷(𝑛) and 𝛽𝑄(𝑛) can be calculated as follows 

𝐹 =
6𝜇𝑈𝑅2𝐿

𝑐2
= 6𝜋𝑆𝐺, (7) 
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where 𝑆 = (𝑅 𝑐⁄ )2 𝜇𝑁 𝑃⁄  is the dimensionless Sommerfeld number, 𝑃 = 𝐺 (2𝐿𝑅)⁄  is the load per unit of 

projected bearing area and 𝑁 is the speed of the rotating shaft in rev/s. Note that according to formula (5) 

the pressure on the part of the journal surface is negative, which is, in fact, a relative negative pressure. 

Since the pressure distribution is anti-symmetric, without mathematical evidence, it is clear that these 

formulas can be applied. Only quadrature force acts on the bearing journal and the direct force is zero  

𝐹𝐷 = 0, 𝐹𝑄 > 0 as is shown on the right panel in Fig. 3. 

 

Fig. 2: Pressure distribution along the angular coordinate. 

 

Fig. 3: Dependence of the direct and quadrature force on the eccentricity ratio. 

This case can only theoretically arise in a fully flooded plain bearing with a vertical axis. The balance of 

forces 𝐹𝐷, 𝐹𝑄 and 𝐺 allows to calculate an attitude angle 𝛼 as 𝑎𝑡𝑎𝑛(𝛽𝐷 𝛽𝑄⁄ ), see Fig. 3. The presence of 

direct force can be explained eg. by the cavitations but the mathematical model is more complicated 

(Ferfecki et al., 2007). The magnitude of the negative pressure for 𝜋 < 𝜃 < 2𝜋 is multiplied by a factor 𝛾, 

therefore the total force is given by the sum of integrals (6) as follows ∫ (… )d𝜃
𝜋

0
+ 𝛾 ∫ (… )d𝜃

2𝜋

𝜋
. The effect 

of negative pressure reduction is demonstrated in Fig. 3. Negative pressure is limited to 1% of the 

magnitude of positive pressure for the angle interval of 0 < 𝜃 < 𝜋. The formulas for the calculation of the 

quadrature and direct forces contain the same factor 𝐹 = 6𝜇𝑈𝑅2𝐿 𝑐2⁄  and hence the dependence on the 

peripheral speed 𝑈 and therefore on the rotor angular velocity. The coefficients  𝛽𝑄(𝑛) and 𝛽𝐷(𝑛) differ 

considerably. The diagrams confirm the linearity of the quadrature and direct force to eccentricity ratio up 

to 0.6. The  𝛽𝑄(𝑛) and 𝛽𝐷(𝑛) coefficients can be approximated in this range as a linear function 

𝛽𝑄(𝑛) ≈ 𝑞𝑐𝑛 = 𝑞𝑒   and   𝛽𝐷(𝑛) ≈ 𝑑𝑐𝑛 = 𝑑𝑒 (8) 

where 𝑞 and 𝑑 determine the quadrature stiffness 𝐶𝑄 = 6𝜇𝑈𝑅2𝐿 𝑐2⁄ × 𝑞 and the direct stiffness 

𝐶𝐷 = 6𝜇𝑈𝑅2𝐿 𝑐2⁄ × 𝑑. The stiffness in the directions of the Cartesian coordinates 𝑥(𝑡) = −𝑒 sin 𝛼 and 

𝑦(𝑡) = e cos 𝛼 is influenced by the attitude angle 𝛼 

[
−𝐶𝐷𝑒 sin 𝛼 +𝐶𝑄𝑒 cos 𝛼

𝐶𝑄𝑒 sin 𝛼 + 𝐶𝐷𝑒 cos 𝛼
] = [

𝐶𝐷𝑥(𝑡) + 𝐶𝑄𝑦(𝑡)

−𝐶𝑄𝑥(𝑡) + 𝐶𝐷𝑦(𝑡)
] = [

𝐶𝐷 𝐶𝑄

−𝐶𝑄 𝐶𝐷
] [

𝑥(𝑡)

𝑦(𝑡)
] (9) 

This chapter was focused on the derivation of the formulas for the calculation of the direct and quadrature 

force acting on eccentric journal axis of the plain bearing. The result is the stiffness matrix in Eq. (1). The 

damping matrix was not derived. The numerical solution of Reynolds equation allows you to respect the 

pressure distribution along the journal axis, i.e. also in dependence on the 𝑧 coordinate. Authors of the 

paper have a test rig (see the right panel in Fig. 4) with the following parameters. The span of bearing 

pedestals is of 200 mm, the journal diameter is of 30 mm, the radial clearance is of 55 µm, and the length-

to-diameter ratio is equal to about 0.77. Pertinent stiffness and damping coefficients are obtained by 

solving Reynolds equation providing that the journal performs the small harmonic motion in a 

neighborhood of its equilibrium position as shown in Fig. 4 (Šimek). Notice the magnitude asymmetry of 
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the cross-coupled stiffness as opposed to (9). Even the numerical solution of the Reynolds equation is not 

perfect because these coefficients which are used for simulation do not lead to the stable journal rotation.  

 

Fig. 4: Real stiffness and damping matrices according to the Reynolds model [10] and test rig. 

4. Muszynska model 

The motion equation of the rotor with the journal bearing in coordinates 𝑥 and 𝑦 was designed by 

Muszynska (1986). Compared to Eq. (1) the stiffness and damping matrices are designed in such a way 

that the oil film is replaced by a spring and a damper that rotates at an angular velocity 𝜆Ω  

[
𝑀 0
0 𝑀

] [
�̈�(𝑡)

�̈�(𝑡)
] + [

𝐷 0
0 𝐷

] [
�̇�(𝑡)

�̇�(𝑡)
] + [

𝐾 𝐷𝜆Ω
−𝐷𝜆Ω 𝐾

] [
𝑥(𝑡)

𝑦(𝑡)
] = [

𝐹𝑋(𝑡)

𝐹𝑌(𝑡)
] (10) 

where 𝐾 and, 𝐷 are specifying proportionality of stiffness and damping to the relative position of the 

journal center displacement vector, 𝜆 is a dimensionless parameter, which is slightly less than 0.5. The 

cross-coupled stiffness 𝐷𝜆Ω according to the Muszynska model corresponds to the expression 

6𝜇𝑈𝑅2𝐿 𝑐2𝑞⁄ . The direct stiffness 𝐾 is orderly less than the cross-coupled stiffness; however, the 

analytical calculation shows the dependence on the rotational speed. The sum of direct and quadrature 

forces must compensate for the gravitational force that does not depend on the speed of rotation. The 

suitability of this model is confirmed by Cavalca (2014). 

5.  Conclusions  

The calculation of the fluid force in the steady-state acting on the bearing journal using the Reynolds 

equation shows that the stiffness matrix corresponds to the stiffness matrix according to the Muszynska 

model. The solution of the Reynolds equation shows that, unlike the Muszynska model, the diagonal 

entries of the stiffness matrix depend on the rotational speed of the rotor. The conclusions apply only to 

the range of magnitudes in which the formulas can be linearized. The theoretical models are always 

unreliable and require comparative measurement on the test rig. 
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