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WITH STRESS STIFFENING OR WEAKENING BY MEANS OF 

DISTRIBUTIONS WITHOUT USING MODAL ANALYSIS  
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Abstract: The paper is the first continuation of previous author’s work in which the author described the 
new approach to analyzing pre-stressed Euler-Bernoulli beam with discontinuities caused by concentrated 
loading, concentrated supports, concentrated inertia forces, or internal hinges situated between ends of the 
beam. The main advantage of this analytical approach is that it enables forced steady-state responses of the 
beam to be expressed exactly in closed forms. This way of dealing with discontinuities is applied here to 
obtain new closed-form solutions for another specific case of boundary conditions and discontinuous loading 
of the beam. 
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1. Introduction 

The new analytical method of computing forced steady-state response of pre-stressed Euler-Bernoulli 
beam with arbitrary combination of discontinuities of assumed types was described in (Sobotka, 2017). 
The discontinuities are supposed to be caused by concentrated supports, concentrated inertia masses, 
concentrated mass moments of inertia, concentrated transverse forces, concentrated moments, situated 
between ends of the beam, or by hinges connecting beam segments. This method has been based on using 
distributions (Schwartz, 1972; Štěpánek, 2001; Kanwal, 2004). 

The new mathematical model for forced transverse vibration of the beam was derived by applying 
distributional derivative for discontinuous shear force, discontinuous bending moment, and discontinuous 
cross-section rotation. This mathematical model is solved as single differential task without dividing the 
beam into segments where all remaining continuity conditions among adjoining segments are fulfilled 
automatically. Applying this approach, we do not have to compute natural frequencies, mode shapes nor 
modal participation coefficients when analyzing forced responses of beams. Forced steady-state responses 
of the pre-stressed beam with various discontinuities can be expressed exactly in closed forms, which 
would be impossible if the modal analysis method was used. 

The forced steady-state response of simply supported pre-stressed uniform beam with one concentrated 
transverse harmonic loading was published in (Sobotka, 2017). In this paper, new closed-form 
expressions for forced the steady-state response of pre-stressed beam are shown for another specific case 
of boundary conditions and discontinuous loading. 

2. The generalized mathematical model for forced steady-state transverse vibration of pre-
stressed Euler-Bernoulli beam 

The beam is assumed to be fixed at its left end, and simply supported at the other end. 
The beam is subjected to combination of a static axial force, N, and a concentrated transverse harmonic 
force F sin(ω t) at x = a. 
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System of ordinary differential equations for unknown general amplitudes of shear force, Qa(x), bending 
moment, Ma(x), cross-section rotation, ϕa(x), and deflection, wa(x), allowing for stress stiffening (in case 
of tensile axial load, N>0) or stress weakening (in case of compressive axial load, N<0) of the beam is as 
follows  

                                       ,                                        (1) 

                                                                     ,                                                                 (2) 

                                                                  ,                                                                 (3) 

                                                                   ,                                                                     (4) 

where E is modulus of elasticity (Young’s modulus), J is area moment of inertia, m = ρ A, ρ is density, A 
is cross-sectional area, ω is circular frequency of vibration, 0<a<l, l is length of the beam. 

The right-hand side of Eq. (1) is the distributional derivative of shear force’s amplitude with respect to x, 
where δ(x-a) denotes Dirac’s singular distribution moved to a point where the concentrated transverse 
load is acting. Dirac’s singular distribution is multiplied by known magnitude of jump discontinuity. 

Boundary conditions for fixed end of the beam are given by 

                                                  ,      ,                                                                         (5) 
Boundary conditions for simply supported end of the beam are given by 

                                                 ,      .                                                                          (6) 

2.1. The general solution to the system of Eqs. (1) to (4) 

Laplace transform method has been used to compute the general response of the beam in respect of 
bending moment (7) and deflection (8), where integration constants are in the form of initial parameters.  
         

                                                (7) 

 

 

 

 

 = d
d
x ( )Qa x −  −  + m ( )wa x ω2 N 






d

d
x ( )φa x F ( )δ  − x a

 = d
d
x ( )Ma x ( )Qa x

 = d
d
x ( )φa x −

( )Ma x
E J

 = d
d
x ( )wa x ( )φa x

 = ( )wa 0 0  = ( )φa 0 0

 = ( )wa l 0  = ( )Ma l 0

( )Ma x
( ) + λ1 λ2

2 ( )sin λ2 x λ1
2

λ2 ( )sinh λ1 x ( )Qa 0

( ) + λ1
2

λ2
2

λ1 λ2

 = 

( ) + λ1 λ2
3 ( )cos λ2 x λ1

3
λ2 ( )cosh λ1 x ( )Ma 0

( ) + λ1
2

λ2
2

λ1 λ2

 + 

( ) − m ω2 ( )sin λ2 x λ1 m ω2 λ2 ( )sinh λ1 x ( )φa 0

( ) + λ1
2

λ2
2

λ1 λ2

 + 

( ) − m ω2 λ2 λ1 ( )cos λ2 x m ω2 λ2 λ1 ( )cosh λ1 x ( )wa 0

( ) + λ1
2

λ2
2

λ1 λ2

 + 

( )−  − λ1 λ2
2 ( )sin λ2 ( )−  + x a λ1

2
λ2 ( )sinh λ1 ( )−  + x a F ( )H  − x a

( ) + λ1
2

λ2
2

λ1 λ2

 + 

782 Engineering Mechanics 2018, Svratka, Czech Republic, May 14 –17, 2018



 

 3 

        

         

                                                                                                                                ,                                    (8) 
where H(x-a) stands for Heaviside’s unit step function, and where 

                                     ,                 ,                                                                              (9) 

          ,         .                        (10) 

2.2.  Determination of integration constants 

Two of four initial parameters are known directly as a consequence of boundary conditions (5). Eq. (7), 
(8) and boundary conditions (6) have been used in order to compute the remaining initial parameters (11), 
(12). 

                 ,                      (11) 

                       .                            (12) 

2.3. The deflection amplitude at the point of concentrated transverse load 

Since the right-hand side of Eq. (8) contains H(x-a), amplitude of deflection at x=a has to be computed 
using bidirectional limit as follows 
      

     

                                                                                                                                                                   (13) 
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3.  Conclusions 

In this paper, the generalized mathematical model published in 2017 for forced response of pre-stressed 
Euler-Bernoulli beam with discontinuities was applied to the specific case of loading and support 
conditions in order to derive new analytical solutions ready for direct use in practice. 

Since the beam is subjected to concentrated transverse harmonic load, the distributional derivative of 
shear force (1) has to contain the respective jump discontinuity. 

Amplitudes of shear force, bending moment, cross-section rotation and deflection of the beam have to 
satisfy Eqs. (1) to (4) and given boundary conditions (5), (6) for fixed left end and simply supported right 
end of the beam. 

Eqs. (1) to (4) allow boundary conditions (5), (6) to be expressed directly without using derivatives of a 
deflection function. 

The new closed-form expression (7) for the amplitude of bending moment with values of initial 
parameters corresponding to (5), (11), (12) was derived as the first contribution of this paper to analysis 
of forced vibration of pre-stressed beams. 

The new closed-form expression (8) for the amplitude of deflection function with values of initial 
parameters according to (5), (11), (12) was obtained as the second contribution of the paper. 

The new closed-form expression of the limit (13) for the amplitude of forced steady-state response of pre-
stressed uniform beam at the point where concentrated transverse harmonic force is acting was computed 
as the third contribution of the paper. 

All the new closed-form general and particular solutions would not be possible if modal analysis were 
used. 

The right-hand side of Eq. (7), (8), (13) is exact in the sense of Euler-Bernoulli theory.  

The effect of stress stiffening of the beam is covered by choosing a positive numeric value for axial 
tensile force, N, in Eqs. (7), (8), (13). 

The effect of stress weakening is covered by choosing a negative numeric value for axial compressive 
force, N, not allowing buckling of the beam. 
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