
 

24th International Conference  
ENGINEERING MECHANICS 2018 

Svratka, Czech Republic, 14 – 17May 2018 

A DAMPED HARMONIC OSCILLATOR IN THE CLASSICAL  
AND FRACTIONAL DIFFERENTIAL CALCULUS  

WITH THE LIOUVILLE DERIVATIVE 

R. Pawlikowski *, P. Łabędzki ** 

Abstract: This paper considers a fractional differential equation with a Liouville fractional derivative for 
damped harmonic oscillator. The proposed analytical solution for the fractional equation is compared with 
the solution for the classical equation. The study involved determining the conditions of the agreement of the 
two solutions and proposing the physical interpretation of the fractional derivative. 
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1. Introduction 

In the recent years, researchers have paid a lot of attention to a new mathematical method − the fractional 
differential calculus. It is expected that the fractional calculus will enable new discoveries and offer a new 
perspective on the old well-known problems. This study offers a contribution to this very promising area 
of research. 

The harmonic oscillator is fundamental to many theories and models in physics and mechanics. 
Generally, the equations of the harmonic oscillator and their solutions in the classical calculus are very 
well known. Some scientists attempt to look at them in a different way by replacing the classical (total) 
derivatives with fractional ones. In this way, a set of new fractional equations of the harmonic oscillator is 
being created. The new equations and their solutions are extensively discussed in the literature (e.g. 
Atanackovic 2014, Blasiak 2017, Herrmann 2014, Kilbas 2006, Podlubny 1999, Stanislavsky 2005). 

This paper discusses the fractional equation for a damped harmonic oscillator in the form proposed by R. 
Herrmann (Herrmann 2014), using the Liouville definition of the fractional derivative (Kilbas 2006, 
Samko 1993, Podlubny 1999, Uchaikin 2013). 

2.  General information and definitions 

The classical damped harmonic oscillator is described by: 
 𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑥(𝑡) = 0 (1) 

where  x = x(t) − the displacement which is a function of time, m (kq) − the mass, c (Ns/m) − the damping 
factor, k (N/m) − the rigidity factor. Equation (1) has the following analytical solution (c =”classical”): 
 𝑥𝑐(𝑡) = 𝐶1𝑒𝜔𝑐1𝑡 + 𝐶2𝑒𝜔𝑐2𝑡 (2) 
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where C1, C2 are constants derived from the initial conditions x(0) = x0, v(0) = v0 . 
Alternatively, the damped harmonic oscillator can be described by means of the fractional equation 
proposed by R. Herrmann (Herrmann, 2014): 

 𝑚�̈�(𝑡) + 𝜇𝑥(𝛼)(𝑡) = 0 (4) 

where x(α)(t) is the fractional derivative of an order of α, (0 < Re(α) < 1). 
This paper considers equation (4) with the Liouville fractional derivative (Kilbas, 2006, Podlubny, 1999, 
Samko, 1993, Uchaikin, 2013): 

 𝑥(𝛼)(𝑡) = 𝐷+∝𝐿 𝑥(𝑡) = 1
Γ(1−∝)

𝑑
𝑑𝑡 ∫

𝑥(𝜉)𝑑𝜉
(𝑡−𝜉)𝛼−[𝑅𝑒(∝)]

𝑡
−∞  , 0 < 𝑅𝑒(∝) < 1, 𝑡𝜖ℝ  (5) 

where x(α)(t) is fractional derivative of an order of α ; with α being a complex number. 
Then equation (4) can be solved with the ansatz x(t) = eωt and with a basic property of the Liouville 
derivative (Kilbas, 2006): 

 (𝑒𝜔𝑡)(𝛼) = 𝐷+∝𝐿 (𝑒𝜔𝑡) = 𝜔𝛼𝑒𝜔𝑡 ,   0 ≤ 𝑅𝑒(∝) (6) 

The characteristic equation of eq. (4)  mω2+μωα=0  

 𝜔𝛼 �𝜔2−𝛼 + 𝜇
𝑚
� = 0,    0 < 𝑅𝑒(∝) < 1 (7) 

gives: 

 𝜔𝑓0 = 0 ,   𝜔𝑓1 = 𝑒𝑥𝑝 �
𝑙𝑛�−𝜇

𝑚�

2−𝛼
�  ,   𝜔𝑓2 = 𝜔𝑓1 (8) 

where f = “fractional”. So, for α: 0 < Re(α) < 1, eq. (4) has an analytical solution: 
 𝑥𝑓(𝑡) = 𝐴0𝑒𝜔𝑓0𝑡 + 𝐴1𝑒𝜔𝑓1𝑡 + 𝐴2𝑒𝜔𝑓2𝑡 = 𝐴0 + 𝐴1𝑒𝜔𝑓1𝑡 + 𝐴2𝑒𝜔𝑓2𝑡 (9) 

where A0, A1, A2 are constants which should be determined using initial conditions. The problem of the 
three different constants and of the reasonable initial conditions is discussed in (Herrmann, 2014). 

3. Problem 

All the coefficients in the classical equation (1) are well defined, have a physical sense and are known 
(experimentally assigned for a particular system). However, in the fractional equation (4), the order of the 
fractional derivative and the coefficient remains unrecognized, particularly in the context of the physical 
sense. Thus naturally, the fundamental question appears: what should the order of the fractional derivative 
α and the coefficient μ be?  

In this work, we ask what the order of the fractional derivative α and the coefficient μ should be to make 
the above solutions of the fractional and classical equations equal ? Obviously, the following relationships 
should be satisfied: 
 for  𝛼 → 0 , 𝑥(𝛼)(𝑡) →  𝑥(0)(𝑡) = 𝑥(𝑡) ∶  𝜇 → 𝑘 ,   𝑒𝑞. (4) → 𝑚�̈� + 𝑘𝑥 = 0 (10) 

 for  𝛼 → 1 , 𝑥(𝛼)(𝑡) → 𝑥(1)(𝑡) = �̇�(𝑡) ∶   𝜇 → 𝑐 ,   𝑒𝑞. (4) → 𝑚�̈� + 𝑐�̇� = 0 (11) 

4. Method 

In the study, we compared the solutions of the classical and fractional equations: 

 𝑥𝑐(𝑡) = 𝑥𝑓(𝑡) (12) 

 0 = 𝐴0 ,𝐶1 = 𝐴1 ,𝐶2 = 𝐴2 ,𝜔𝑐1 = 𝜔𝑓1 ,𝜔𝑐2 = 𝜔𝑓2,𝜔𝑐1 = 𝜔𝑓2 ,𝜔𝑐2 = 𝜔𝑓1  (13) 

Four possibilities appeared in the domain of frequency. We performed calculations for all of the cases and 
we selected the one for which the solutions (classical and fractional) equal and  0 < Re(α) < 1 (equations 
(10) and (11)). Then, this case was used to calculate α and μ. Thus: 
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From equation (14)  α  is: 
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Putting in eq. (15) α = 0 and α = 1 respectively, we obtained following formulas for μ: 
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On the basis of the above and of conditions (10), (11), we postulate the following form of the parameter 
μ: 

   𝜇 = −𝑚�−  𝛼𝑐
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And now by returning to equation (15), we obtained the final formula for the order of the fractional 
derivative α : 

 𝛼 = 𝛼(𝑚, 𝑐,𝑘) = 2 − 𝑐�√𝑐2−4𝑘𝑚+𝑐�
𝑐√𝑐2−4𝑘𝑚+𝑐2+2𝑘𝑚

 (19) 

Thus, α = α(m,c,k) and μ=μ(α,m,c,k), and satisfy the following conditions: 

 lim𝑐→0 𝛼 = 0,   lim𝑘→0 𝛼 = 1,  lim𝛼→0 𝜇 = 𝑘 ,   lim𝛼→1 𝜇 = 𝑐 (20) 

5.  Results 
Numerical calculations were performed for both parameters α and μ. The results obtained for the more 
interesting parameter, i.e. for the order of fractional derivative α, are presented in Fig. 1 and Fig. 2. For 
clarity, a specific case is illustrated in Fig. 2. 

 
Fig. 1: The order of the fractional derivative α (calculated from formula (19), m = 1 kg). 
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Fig. 2: The order of the fractional derivative α for selected case:  k = 20 (left), c = 1 (right). 

 

It was found that: 
− the parameters of the fractional equation (4), α and μ, for which its solution is equal to the 

solution of the classical equation, can be calculated and the formulas are known; 
− the classical equation can be replaced with the fractional one; 
− excellent agreement of both equations exists only for the complex α (numerical observations). 

Furthermore, the authors propose some physical interpretation of the fractional derivative in equation (4). 
Up to now, scientists have treated damping and rigidity in solids as two different physical phenomena. 
We suggest that they should be looked at as two aspects of one physical phenomenon, which can be 
described just by means of the fractional derivative. 

6. Conclusions 
This paper has considered the fractional equation for the damped harmonic oscillator in the form 
proposed by Herrmann (2014). The analytical solution of the fractional equation has been calculated and 
compared with the solution of the classical equation. The conditions of the agreement of the solutions 
have been calculated and the order of the fractional derivative has been derived. It can be concluded that 
the classical equation can be replaced with the fractional one. We propose a certain physical interpretation 
of the fractional derivative in the fractional differential equation for the damped harmonic oscillator.  
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