
1. Introduction

The electronic structure of a material determines its chemical/physical properties, such as elasticity, hard-
ness, electric and magnetic properties, etc., see (Martin, 2005). The electronic structure calculations rep-
resent a rigorous tool for predicting and understanding the properties of materials for many years, and a
number of methods and algorithms has been proposed and implemented in various computer codes. Many
of those methods are based on the density-functional theory (DFT) framework (Martin, 2005), and seeking
of a self-consistent state by a fixed-point iteration, the so called DFT loop. One of the key components
needed for fast convergence is to apply a suitable mixing of new and previous states in the DFT loop as it
can potentially both accelerate the convergence and reduce oscillations in the self-consistence error.

We have developed a new robust ab-initio real-space code based on (i) the density functional theory, (ii)
the finite element method (FEM) (Strang and Fix, 2008) and (iii) environment-reflecting pseudopotentials
(Vackář and Šimůnek, 2003). This approach to solving Kohn-Sham equations and calculating electronic
states, total energy, Hellmann-Feynman forces and material properties brings a new quality particularly
for non-crystalline, non-periodic structures (Vackář et al., 2011). The convergence properties of the code
related to the used discretization (a standard finite element basis, or a spline basis of isogeometric analysis)
were analyzed in papers (Cimrman et al., 2018b,a).

In this contribution we discuss convergence of the code with the standard Anderson mixing algorithm
((Anderson, 1965; Pulay, 1982), called also Pulay mixing) and its modification Guaranteed Residual Pulay
method ((Bowler and Gillan, 2000), abbreviated as GR-Pulay) as well as a newly proposed adaptable hybrid
scheme that combines those two approaches so as to accelerate the convergence. The presented numerical
examples illustrate behaviour of the schemes on a simple system (Nitrogen molecule) and a more complex
system (a graphene fragment), where all the schemes struggle.
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2. Electronic structure calculations and FEM
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Fig. 1: The DFT loop.

The systems of atoms and molecules are described in the most
general form by the many-particle Schrödinger equation, which
is, however, too complicated to solve, even for three electrons.
Among the techniques reducing this complexity, we use the DFT
approach (Dreizler and Gross, 1990). The DFT allows decompos-
ing the many-particle Schrödinger equation into the one-electron
Kohn-Sham equations (Kohn and Sham, 1965), that have, after the
FE discretization, the following eigenvalue problem form, seeking
the orbitals ψi:
∫

Ω

1

2
∇ψi·∇v dV+

∫

Ω
vV ψi dV = εi

∫

Ω
vψi dV , ∀v ∈ H1

0 (Ω) ,

(1)
where V := VH + Vxc + V̂ is the total potential consisting of an
effective ionic potential for electrons V̂ , the exchange-correlation
potential Vxc describing the non-coulomb electron-electron interac-
tions and the electrostatic potential VH obtained as a solution to the
Poisson equation

∫

Ω
∇v · ∇VH = 4π

∫

Ω
ρv , ∀v ∈ H1

0 (Ω) , (2)

with the charge density ρ(r) =
∑N

i ni|ψi(r)|2 on the right-hand side. See (Cimrman et al., 2018b) for
details. The problem (1), (2) is nonlinear and needs to be solved iteratively: we use the stadard DFT loop
algorithm outlined in Fig. 1. The purpose of the DFT loop is to find a self-consistent solution — a fixed
point of a function of the charge density ρ. For this task, a variety of nonlinear solvers can be used. Below
we use several quasi-Newton solvers applied to DFT (ρk) − ρk = ρk+1 − ρk = 0, where DFT denotes a
single iteration of the DFT loop.

3. Examples

The two test systems are a nitrogen molecule N2 as an easy to solve system, with only 10 eigenpairs
required, and a graphene fragment as an example of a more complex system, with 84 eigenpairs required.
For illustration, the resulting charge densities are shown in Fig. 2. The standard Anderson (Anderson,

Fig. 2: Charge densities ρ of the test systems: left: a N2 molecule, right: a graphene fragment.

1965; Pulay, 1982) and GR-Pulay (Bowler and Gillan, 2000) mixing algorithms were used. As the GR-
Pulay algorithm failed to converge in the graphene fragment case, we proposed a modification, abbreviated
as GR-Pulay-LM: the new charge density was generated using the standard linear mixing scheme, instead
of the fixed α = 1.0 of the original GR-Pulay. This is similar to, but not the same as, the approach
in (Banerjee et al., 2016). The last algorithm was our newly proposed adaptable hybrid scheme. The
convergence graphs for various values of the mixing parameter α are shown in Fig. 3 for the N2 molecule,
and in Fig. 4 for the graphene fragment. As the criteria for stopping iterations, we used either a stagnation
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of convergence (no residual reduction in ten subsequent iterations) or the residual norm decrease below a
threshold.
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Fig. 3: Convergence of the DFT loop for different values of the mixing parameter α in the case of the N2

molecule. The original GR-Pulay algorithm (α = 1) is added to the α = 0.9 plot for comparison.
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Fig. 4: Convergence of the DFT loop for different values of the mixing parameter α in the case of the
graphene fragment. The solid lines connect the running minima of the oscillating convergence curves. The
original GR-Pulay algorithm (α = 1) is added to the α = 0.9 plot for comparison.
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4. Conclusion

The proposed adaptable hybrid scheme performs better or as well as the best other scheme in both test
problems, independently on the value of the mixing parameter. The GR-Pulay-LM scheme (our modifi-
cation of the GR-Pulay algorithm) is competitive especially for the higher mixing parameter values in the
complex test problem. In future we plan to compare the properties of the proposed scheme to other recently
published schemes such as (Banerjee et al., 2016).
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