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Abstract: This paper analyzes the application of the semi-Markov process to the construction of a 4-state 
system of preventive replacements with minimal repair. Asymptotic availability was adopted as a function. 
An example shows that with certain assumptions the availability assumes an exactly one maximum.  

Keywords:  semi-Markov process, availability, minimal repair, perfect repair, preventive replacement 

1. Introduction 

Most operation systems suffer from failure due to the age of technical objects and their long lifetime. In 
order to reduce the number of failures of technical objects, strategies for preventive replacements have 
been introduced into management systems. Several different replacement strategies have been developed 
to reduce system maintenance costs. Among the many methods of the evaluation and the control of repair 
systems, the semi-Markov processes have been implemented (Chen et al., 2005, Grabski, 2014 and 
Knopik et al., 2017). Management of operation systems requires various activities related to maintaining 
reliability and availability of technical objects. These activities are divided into two types: preventive 
(PM) and repair (CM). Typically, repairs require prior damage diagnosis and identification. Therefore, the 
costs and repair times are generally higher than the costs and times of preventive measures. For some 
operation systems, it is also possible to repair a damaged technical object via minimal repair (MR). The 
minimal repair restores the damaged technical object (element) to the state before the failure occurred, 
without changing its failure rate. Based on this argument, many practical models of exchanges with 
minimal repair have been suggested in literature. The concept of a minimal (imperfect, inaccurate) repair 
was introduced in paper (Brown, 1983). The minimal repair model assumes that when the failure occurs, 
perfect repair is carried out with probability p and minimal repair is carried out with probability 1 – p. 
Perfect repair restores the technical object to "good-as-new" condition, while minimal repair to "bad-as-
old" condition. If p = 0, repair is always minimal, whereas if p = 1, repair is always perfect. In paper 
(Block et al., 1985), an assumption was made that the probability of perfect repair depends on the age of 
the technical object at the time of failure. On the other hand, a generalization of the model presented in 
paper (Brown, 1983) into a two-dimensional version was proposed in paper (Sheu et al., 1992). This 
paper analyzes the possibility of using semi-Markov processes to build a model of preventive 
replacements in systems with minimal repair. Its availability is examined as criteria function. 
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2. A model of replacement system with minimal repair 

This paper examines the semi-Markov model of preventive age-dependent replacements. The 4-state 
semi-Markov X(t) process is presented with state space S = {1, 2, 3, 4}. If X(t) = i, then the presented 
process at moment t is in state i. It is assumed that state 1 is correct operation state, state 2 is minimal 
repair state, state 3 is perfect repair state, state 4 is the preventive replacement state. Through zi, i = 1, 2, 
3, 4, the profit per time unit for state i is determined. It is assumed that τ0 < τ1 < τ2 < … < τk < … are leap 
moments and vk = τk – τk-1 for k ≥1, v0 = 0 are times of remaining at process states X(t). The semi-Markov 
process is fully defined if the initial distribution is known: 

( ){ } ( )iP X 0 i p 0 ; i 1, 2,..., 4= = =  

and its semi-Markov kernel is defined by matrix: 

Q(t) = [Qij(t)], where Qij(t) = P {X(τk+1 ) = j, τk+1 - τk < t|X(τk) = i}; i, j = 1, 2, …, 4 
A sequence of random variables X(τk), k ϵ N is a Markov chain embedded in the semi-Markov process 
with probability transfer matrix: 

( )ij ijP p Q ; i, j 1, 2,..., 4= = ∞ =        

Random variables Ti, i = 1, 2, …, 4 stands for times of remaining at states of process X(t) and have 
distribution functions in the form of: 

( ) { } ( ){ }i i k 1 k kF t P T t P t X j+= < = τ − τ < τ =  

or, alternatively: 

 ( ) ( )
4

i ij
j 1

F t Q t ; i 1, 2,..., 4
=

= =∑  (1) 

Distribution function for time of remaining at state i, before transfer to state j, is defined as follows: 

 ( ) ( ) ( ){ }ij k 1 k k 1 kF t P t X j, X i ; i, j 1, 2,..., 4, k N+ += τ − τ < τ = τ = = ∈  (2) 

For distribution function ( )1jF x  defined by formula (2), it is assumed that ( ) ( )1j 1F x F x=  for j = 2, 3, 4. 
When building criteria function, the limit theorem for finite semi-Markov processes is used (Howard, 
1971 and Grabski, 2002 and Knopik, 2010). It is assumed that the mean values ETi, i = 1, 2, …, 4 are 
finite, positive and the Markov chain ( )kX , k 0,1, 2,...τ = , has one ergodic class. These assumptions 
lead to the formulation of the limit theorem in the form: 

 j t t
P lim P{X(t) j} lim P{X(t) j | X(0) i}; i, j 1, 2,..., 4

→∞ →∞
= = = = = =  

where: 

 
*
j j

j 4
*
i i

i 1

p ET
P

p ET
=

=

∑
 (3) 

where *
jp , j 1, 2,..., 4=  is a limit distribution of Markov chain ( )kX , k Nτ ∈  embedded in semi-Markov 

process. Limit probabilities pj
* are the solution of the system of linear equations: 

4
* *
i ij j

i 1

p p p
=

=∑  with the condition that 
4

*
i

i 1

p 1
=

=∑ ; j = 1, 2, 3, 4 

On the basis of papers (Knopik, 2010 and Knopik et al., 2018), the function is expressed by the formula: 
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4
*

i i i
i 1

4
*
i i

i 1

z p ET
g x

p ET

=

=

=
∑

∑
 (4) 

It is assumed that probability transition matrix of an embedded Markov chain has the following form: 

12 13 14

21 23

0 p p p
p 0 p 0

P
1 0 0 0
1 0 0 0

=

 
 
 
 
 
 

 

Limit probabilities for Markov chain embedded in semi-Markov process X(t) are as follows:  

 *
1

1
p

M
= ;   * 12

2

p
p

M
= ;   * 13 12 23

3

(p p p )
p

M
+

= ;   * 14
4

p
p

M
=  (5) 

where M = 2 + p12p23. 

It is assumed that after time x expires, if the object has not been damaged, it moves to the preventive 
replacement state 4. A new process is obtained with a new probability transition matrix P(x) embedded in 
Markov chain. In relation to the matrix P described above, only the first row of the matrix changes. 
Specifically: 

p12(x) = p12 F12(x);   p13(x) = p13 F13(x);   p14(x) = p14(x) F14(x) + R1(x) 

On the basis of (Knopik, 2010), function takes the following form: 
L(x)

g(x)
M(x)

= , where: 

 L(x) = z1 ET1(x) p1
*(x)+ z2 ET2p2

*(x) + z3ET3p3
*(x) +z4 ET4 p4

*(x) 

  (6) 

  M(x) = ET1(x) p1
*(x)+ ET2p2

*(x) + ET3p3
*(x) + ET4 p4

*(x) 

where ( ) ( )
x

1 1
0

ET x R t dt= ∫ . 

On the other hand, ET2, ET3, ET4 are mean values of the object remaining at states 2, 3, and 4. For 
availability g(x) it is assumed that z1 = 1, z2 = z3 = z4 = 0. Taking the above assumptions and solutions into 
consideration (5), the availability g(x) on the basis of papers (Grabski, 2002, and Knopik, 2010, and 
Knopik et al., 2018) takes the following form:  

1

1 1

ET (x)
g(x)

ET (x) F (x)B C
=

+ +
 

where: 

B = ET2p12 + ET3(p12 p23 +p13) - ET4(p12 + p13);   C = ET4 

3. Numerical example  

This section analyzes the example of determining the value of the function g(x), in the case when g(x) is 
the availability. The following data were used for the calculation: values of non-zero matrix elements P: 
p12 = 0.2, p13 = 0.6, p14 = 0.2, p21 = 0.2, p23 = 0.7; expected values of remaining at process states X(t): 
ET2 = 0.2, ET3 = 0.5, ET4 = 0.1 and for the correct operation of T1 the Weibull distribution was adopted 
with the scale parameter b = 6. The calculations were made for three values of Weibull distribution form 
parameter c, c ϵ {4, 5, 9} corresponding to mean values of correct operation time ET1: 5.44, 5.61, 5.68. 

Neubauer A., Knopik L., Szubartowski M., Migawa K. 587



 

 4 

Figure 1 shows the obtained function g(x) results. In each of the analyzed cases there exists a value of 
optimal replacement time x. In particular, the criteria function reaches a maximum: gmax(x) = 0.959 for 
c = 4 and x = 3; gmax(x) = 0.969 for c = 5 and x = 3.6; gmax(x) = 0.973 for c = 9 and x = 4. 

 
Fig.1: Charts of value changes of availability g(x) depending on preventive replacement time x, 

for c ϵ {4, 5, 9} 

4. Conclusions 

Implementation of semi-Markov processes in optimization of availability brings about the possibility to 
effectively determining the maximum value of said rate. This paper showed this through an example in 
which time to failure has Weibull distribution. To examine whether the criterial function reaches its 
maximum also for other types of time-to-failure distributions, it is advisable to formulate conditions 
sufficient for the existence of the maximum criterial function. 
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