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Abstract: In this contribution, accuracy of the QuasiContinuum (QC) methodology is studied for the case
of dislocation pileup against an impenetrable obstacle in two-dimensional hexagonal lattices. To this end, a
simplified shear test with a predetermined horizontal glide plane and next-to-nearest interactions described by
the Lennard-Jones potential is adopted. The full molecular statics solution is computed, which is compared to
two different QC simulations in terms of spatial positioning of individual dislocations along the glide plane,
corresponding disregistry profiles, and dislocation core structures.
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1. Introduction

Dislocations are the determining factor for material behavior such as plastic slip or crack initiation, which
are one of the most common reasons of material failure. Numerical simulation of dislocations therefore
play an important role across many engineering fields. Simulation of dislocations on the atomistic level
is the most accurate approach, but requires large computational costs that limit its applicability. In order
to decrease the computational cost, several models that use different scales have been introduced in the
literature, such as discrete-to-continuous methods, continuous Peierls–Nabarro models, discrete dislocation
method, or dislocation density models.

In this work, molecular statics is used to model dislocation pileup in two-dimensional hexagonal lattices.
Quasicontinuum methodology is employed to reduce the excessive computational costs, and its accuracy
and efficiency is compared against the full atomistic model.

2. Full atomistic model

Atomistic models in molecular statics are characterized by an underlying lattice and interatomic potential.
In this work, hexagonal lattices are adopted with interactions described by the Lennard-Jones (LJ) potential
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In Eq. (1), rαβ = ||rβ − rα||`2 denotes the distance between two atoms α and β positioned at rα and rβ ,
ε is the depth of the energy well, and rm denotes the distance at which the interaction energy reaches its
minimum, cf. Fig. 1 (left). The total potential energy of an atomic structure is evaluated as a sum over all
interactions, i.e.
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Because evaluation of the interatomic potential for all pairwise combinations is expensive, and because
long-distance interactions have negligible contributions to the total potential energy (cf. Fig. 1 left), only
interactions within the so-called cutting radius, rcut, are usually considered. Such a simplification intro-
duces a discontinuity in φαβ(rcut), which is removed by subtracting a linear function to yield zero value
and zero slope at rαβ = rcut.

a
b θ = 120◦

rcut = 2.5d0

d0

h0 =
√
3d0/2

Fig. 1: Lennard-Jones potential (left), and two-dimensional hexagonal lattice (right). Considered atom
(empty circle), its nearest neighbors (red dots), next-to-nearest neighbors (blue dots), and the remaining

atoms situated outside the cutting radius (black dots).

Adopted hexagonal lattice has a lattice spacing d0, meaning that the cutting radius rcut = 2.5 d0 provides
next-to-nearest interactions (shown in Fig. 1 right). In order to find a stress-free configuration, initial re-
laxation is carried out for the ideal lattice with periodic boundary conditions and initial lattice spacing
d0 = rm, which results in a hexagonal lattice with a slightly adjusted lattice spacing d0 = 0.9917496 rm.
This updated value of d0 is used as the initial lattice spacing for all simulations listed below.

At each time step, corresponding boundary conditions (prescribed displacements) are incremented, yielding
an imbalanced system. Equlibration is carried out using the trust-region algorithm, which provides updated
positions of all atoms r that minimize E. The resulting configuration is stored and used as the initial guess
in the next time step.

3. Quasicontinuum

Quasicontinuum (QC) methodology is a concurrent multiscale technique originally introduced by Tadmor
et al. (1996). The key idea of the QC is that it combines accurate but expensive atomistic description where
needed with relatively cheap continuum approximation elsewhere. Considered domain is therefore divided
into two parts; in the fully refined region, the full atomistic system is resolved exactly, whereas in the
coarse-grained region (triangular) interpolation elements are introduced, yielding effectively a continuum
approximation. Only the nodes of adopted triangulation are considered to describe the kinematics of the
entire system. They are called representative atoms, or repatoms for short, and their positions are stored
in a column rrep. High number of degrees of freedom (DOFs) associated with the full system is thereby
significantly reduced, whereas positions of all atoms r can be obtained by interpolation, i.e.

r = Φrrep. (3)

In Eq. (3), Φ denotes an interpolation matrix associated with adopted triangulation.

In the next step, summation rule is introduced to approximately evaluate the total potential energy of the
entire system. Site energies of all interpolated atoms situated inside one triangular element can be approx-
imated by the energy of a few, or even only one sampling atom with its corresponding weight factor wα.
The total energy can be then estimated as

E =
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Tab. 1: Properties of different models

Atoms Reaptoms Sampling Elements Unknown Newton Solving
atoms DOFs iterations time

Full model 65 921 - - - 128 632 3 381 1.0

QC1 65 921 6 967 10 317 3 043 12 449 2 738 0.105

QC2 65 921 16 961 20 209 2 954 32 437 3 194 0.243

where φα is the site energy of a sampling atom α. Several possible ways exist to select appropriate sampling
atoms. The central summation rule after Beex et al. (2014) is used throughout this work.

Note finally that the fully-refined regions and used interpolation mesh can adaptively change at each itera-
tion or time increment in order to increase the accuracy, or to capture movement of individual dislocations.
In this contribution, however, only a fixed triangulation is considered for simplicity.

4. Results

A simplified shear example is adopted to analyze dislocations propagating along a predetermined glide
plane, geometry of which is sketched in Fig. 2 (left). Shear opening of the notch is governed by prescribed
horizontal displacements along the left vertical edge. The prescribed displacement ū is increased to its final
value 5 d0 in 100 uniform loading steps. For such a type of loading, dislocations are expected to propagate
along the horizontal glide plane positioned in the mid-height of the specimen. In QC simulations, fully
resolved region is situated in the close vicinity of the glide plane, using two different meshes. In the first
case (abbreviated as QC1), the height of the fully refined region is 16h0, cf. Fig. 2 (right). In the second
case (abbreviated as QC2), the height is chosen as 64h0. Corresponding numerical properties of all three
models are summarized in Table 1.
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Fig. 2: (left) A sketch of the shear example used in simulations along with its deformed shape (dotted line),
and corresponding glide plane (dashed line). (right) Triangulation of adopted model QC1; repatoms are

shown as black dots, interpolation elements as blue triangles, and sampling atoms as blue dots.

Obtained QC results are next compared against the full atomistic simulation. Disregistry and opening
profiles are depicted in Fig. 3 (left), whereas positions of individual dislocations in different loading steps
are compared in Fig. 3 (right). Although all simulations provide generally very similar results, it is worth
noting that in the full simulation, the dislocations propagate mainly in small jumps, whereas in QC1 the
propagation of dislocations seems to be smoother, cf. Fig. 3 (right). This difference is observed mainly
for the dislocations located closer to the right edge, where the influence of the impenetrable obstacle is
strongest. This kind of behavior can be explained by different dislocation core structures. For QC1, the
height of the fully resolved region is not sufficient, yielding a distorted shape of the dislocation core shown
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in Fig. 4 (right). Distorted dislocation cores observed in QC solutions have a smoother disregistry profile
(Fig. 3 left inset), and they are less stable. Such dislocations propagate more easily and slightly further when
compared to the full solution. The solution corresponding to the QC2 system on the other hand provides
the correct shape of the dislocation core structure and hence, the positioning of individual dislocations is
more accurate in this case, see Fig. 3 (left).

Fig. 3: Disregistry profile (left top) and opening profile (left bottom) normalized by the lattice spacing d0.
Positioning of individual dislocations as a function of the external loading (right).

Fig. 4: Dislocation core structures corresponding to the full model (left), and to the QC1 model (right).
Coloring of individual atoms reflects the level of local lattice disregistry (increasing from blue to red).

5. Conclusions

In this contribution, a comparison of the QC model against the full molecular statics solution for the case
of dislocation pileup in two-dimensional hexagonal lattices has been provided. It has been shown that the
QC system is rather sensitive to the choice of triangulation, but provides significant computational savings.
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