

24th International Conference
ENGINEERING MECHANICS 2018

Svratka, Czech Republic, 14 – 17 May 2018

DETERMINING THE TRAJECTORY OF FILLING A RECTANGULAR
FLAT AREA FOR AN INDUSTRIAL ROBOT USING A MARKER AND A

SINGLE-CAMERA VISION SYSTEM

M. Łaganowska*, J. Zwierzchowski**

Abstract: The paper presents a vision system of an industrial robot, used to identify the location of an object
in space by means of a marker. On this basis, the trajectory of the robot is determined, which is to fill the area
with a rectangular shape. The ArUco module was used to detect the markers. It allows the recognition of
ARTag markers with their position and orientation in relation to the camera. The first stage of the algorithm
is calibration of the camera, using the ChArUco table (it is part of the ArUco module) and reading the
calibration parameters. Next part is generating a tag that will be used in the algorithm. The next step is to
detect the marker and then determine its actual location. In the last stage, a border is drawn for the found tag.
Marker location and orientation values resulting from the algorithm's operation are used to control the robot's
movement in order to determine the desired trajectory.

Keywords: vision system, image processing, markers detection, ArUco markers

1. Introduction

Automatic systems play an increasingly important role in controlling the work of industrial robots. The use
of vision systems ensures a significant increase in the degree of industry automation.

In this work, the vision system is responsible for calculating the actual position of the object using the
marker located on it. Location assessment is of great importance in many computer visualization
applications. The process consists in finding the relationship between points in the real environment and
the image projection 2D. Marker recognition and determining the position of the object is possible due to
the use of the ArUco module from the OpenCV library.

OpenCV is a free open source library. It was built to create a common ground for computer vision systems
and to accelerate the use of machine perception. The library has more than 2,500 algorithms that can be
used to detect and recognize faces, identify objects, track moving objects, recognize scenery and establish
markers in real time.

The use of synthetic markers greatly facilitates the task of recognizing objects. The ArUco module allows
the recognition of ARTag markers along with determining the position and orientation of the object relative
to the camera. The ArUco module is an addition to the OpenCV library and is used to detect markers. The
ArUco marker has a square shape and consists of a black border and an internal binary matrix that
determines its identifier. The black border allows quick detection of the marker, and the binary matrix
enables its identification. The size of the tag is determined by the size of the internal matrix, e.g. a 4x4 size
marker consists of 16 bits.

* mgr inż. Małgorzata Łaganowska: Department of Automation and Robotics, Faculty of Mechatronics and Mechanical

Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7; 25-314, Kielce; PL,
mlaganowska@tu.kielce.pl

** dr inż. Jarosław Zwierzchowski: Department of Automation and Robotics, Faculty of Mechatronics and Mechanical
Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7; 25-314, Kielce; PL,
j.zwierzchowski@tu.kielce.pl

48124th International Conference
ENGINEERING MECHANICS 2018
Svratka, Czech Republic, May 14 –17, 2018
Paper #313, pp. 481–484, doi: 10.21495/91-8-481

 2

Description of the test stand

The main element of the test stand is the KAWASAKI FS 06N industrial robot with the D+ series controller.
The robot communicates with the application installed on the PC. The digital camera implemented in the
system works directly with the software and transfers the image in high resolution to the computer. The
station for detecting objects and generating trajectories is presented in Fig. 1.

Fig. 1: Test stand.

2. Image processing algorithm

The first stage of the algorithm's operation is calibration of the camera using the ChArUco module and the
calibration board. ChArUco is a module implemented in ArUco. It allows user to get a higher calibration
quality, because the corners of the ChArUco board are much more accurate compared to the corners of the
ArUco board. Calibration of the camera was carried out using a program whose source code is supplied
with the ArUco module. The calibration table was generated by a program that was also supplied with the
ArUco module. The ChArUco board was created by adding markers on the white chessboard boxes, while
the ArUco board is built only from the markers. The parameters obtained from camera calibration were
saved in the file kalibracja.

The next step is to read the calibration parameters. The readCameraParameters() function opens the
kalibracja file and reads the calibration parameters. In the camera_matrix matrix there are camera
parameters, and distortion factors in the matrix distortion_coefficients. The data from the above matrices
have been written appropriately under the variables camMatrix and distCoeffs.

The next step is to generate the tag used in the algorithm. First, define the range in which the marker is
contained. The range indicates the number of bits that make up the marker and the number of tags in this
range. The scope statement is made using the following function Ptr <aruco :: Dictionary> dictionary =
aruco :: getPredefinedDictionary (aruco :: DICT_4x4_50). This range contains 50 tags that consist of 16

482 Engineering Mechanics 2018, Svratka, Czech Republic, May 14 –17, 2018

 3

bits (4x4). These markers have numbers from 0 to 49. The following function is used to generate a tag:
drawMarker (dictionary, id, sidePixels, OutputArray, borderBits). The dictionary parameter specifies the
range in which the marker is contained. Id is the marker number described in the integer variable. SidePixels
determines the dimensions of the marker, e.g. 50 means 50x50 pixels. OutputArray is the output image of
the marker. In the borderBits parameter, the width of the marker frame is given.

The vision system algorithm has been implemented in the getCameraProcessed() function. First, the image
from the camera using the getCameraMat() function is downloaded. This image is converted into a
grayscale. If necessary, the exact parameters of the marker, e.g. correct identifiers must be specified. These
parameters must be saved in a file and then read using the readDetectorParameter() function. No additional
marker parameters were imposed on this paper. The next stage of the algorithm's operation is to read the
camera parameters after calibration. The calibration procedure has been described earlier. The next step in
the algorithm is to detect the tag. This is done using the detectMarkers(image, dictionary, corners, ids,
detectorParameters, rejected) function. The image parameter is the name of the variable that stores the
input image taken from the camera. Dictionary is the range of the generated tag, and corners is a vector
that stores the coordinates of the tag's corners relative to the tag. The tag identifier is located in the ids
variable. DetectorParameters are tag parameters. Vector rejected stores images of markers with an
incorrect identifier.

The basic stage of the algorithm is to estimate the actual position of the marker. This is done using the
estimatePoseSingleMarkers(corners, markerLength, camMatrix, distCoeffs, rvecs, tvecs) function.
Parameters of this function are:

- corners – defines the four corners of the marker in the coordinates of the marker, it is passed from the
detectMarkers() function.

- markerLength – the length of the side of the marker.

- camMatrix – camera parameters from the calibration file.

- distCoeffs – distortion coefficients from the calibration file.

- rvecs – a 3-element vector that specifies the orientation of the marker relative to the camera.

- tvecs – a 3-element vector defining the position of the marker in the X, Y, Z axis with respect to the
camera.

The last step is to draw a border for the found marker. The drawDetectedMarkers(image, corners, ids)
function serves this purpose. The image parameter is the output image on which the marker border will be
located. Corners are previously recognized marker corners. The ids parameter stores the tag identifier.

Finally, the values of the rvecs and tvecs vectors should be retrieved, using the wektorrot() and the
wektrotrans() functions. The position and orientation values of the marker will be used to control the robot.

The steps of the detection algorithm are presented in Fig. 2.

Fig. 2: Steps of the detection algorithm.

Łaganowska M., Zwierzchowski J. 483

 4

The image obtained as a result of the algorithm's operation is shown in Fig. 3. The marker's border is marked
in green. In the middle his identifier was displayed.

Fig. 3: Identified tag.

3. Implementation of the robot's movement

To support the vision system and connect with the robot, a window application was used as an element of
the station's equipment. The application was written in Microsoft Visual Studio using the Qt libraries. The
robot's communication with the application is carried out using the TCP/IP protocol. The application allows
user to connect to the robot terminal via the KCwinTCP program. Using the application, it is also possible
to turn the camera on and off.

The rotation and translation vectors passed in the functions wektortrans() and wektorrot() are used to
control the robot. These are vectors determining the position and orientation of the point lying in the center
of the marker, relative to the camera coordinate system. The coordinates of this point are sent to the program
that realizes the movement of the robot. Next, the camera offset should be taken in relation to the tool
coordinate system. Based on coordinates of the center of the marker, the coordinates of the vertices of the
rectangular area are calculated. Thanks to this coordinate, the robot tool can realize the trajectory of filling
in a given area.

4. Conclusions

The work presents a vision system for detecting objects using markers and the ArUco module. As a result
of the operation of the appropriate image processing algorithm, the values of the object shift and rotation
relative to the camera were obtained. These values were used to implement the assumed robot movement.
The use of markers makes it easier to detect objects. The main advantage of using them is that a single
marker provides sufficient parameters to obtain a real position. In addition, internal binary coding enables
them to be reliably identified.

References
Bacik, J. (2017) Autonomous flying with quadrocopter using fuzzy control and ArUco markers, Springer Berlin

Heidelberg.
Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F. J. and Marin-Jimenez, M. J. (2014) Automatic generation

and detection of highly reliable fiducial markers under occlusion, Pattern Recognition, 47, pp. 2280-2292.
Kawasaki Heavy Industries, Ltd. (2007) Programowanie w języku AS.
Moeslund, T. B. (2012) Introduction to Video and Image Processing, Springer-Verlag London.

484 Engineering Mechanics 2018, Svratka, Czech Republic, May 14 –17, 2018

