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Abstract: The paper presents a method of controlling a gyroscope system constituting a drive in observation 
and tracking heads and in the coordinator of the target of self-guiding flying objects. In many cases, the 
mentioned system becomes non-stationary due to the changing parameters such as the speed of own rotation 
(fast) or friction in the bearings of the gyroscope frames. Classical controllers do not provide sufficient 
control accuracy, thus the flying object will not be able to intercept the moving target. The modified linear–
quadratic regulator described previously is a solution to this problem. This article shows the effectiveness of 
this regulator in comparison with the optimal regulator of PD. Some results of the research are presented in 
a graphical form. 
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1. Introduction 

Gyroscopic systems (GS) are still widely used in the systems of observation and tracking of the target 
located on the board of moving objects (Gapiński et al., 2014; Gapiński and Szmidt, 2017). As high 
precision of action is required from them, the stabilizing and tracking controls should be very carefully 
selected. The classical method of controlling the optimal gyroscope axis movement with a square quality 
indicator turns out to be unsatisfactory in the case of influence of external interference on GS in the form 
of kinematic substrate interaction, as well as the changing in time parameters of the gyroscope itself 
(increase or decrease in the own speed, friction in frame bearings, imbalance of the rotor, lack of 
coinciding of the center of mass with the center of rotation of the frames, etc.). The effect of this type of 
disturbance may be the non-provision of interception of the moving target to the flying object (Grzyb and 
Stefanski, 2017; Krzysztofik and Koruba, 2014). In such cases, the modified Linear–quadratic regulator 
(LQR) method should be used to control of GS.  

In the paper (Koruba and Krzysztofik, 2017) an example of using this method for a non-linear gyroscope 
with constant parameters is presented. In this paper, the modified LQR method for controlling the non-
stationary gyroscopic system (its parameters are variable over time) has been used. 

2. Model of dynamics and control of the gyroscopic system 

In the classical LQR method we assume linear equations of the system and state matrix A with fixed 
parameters. In the modified LQR method, matrix A is replaced with Jacobian determined on the basis of 
the nonlinear equations of motion. 
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Non-linear movement equations of controlled gyroscopic system have the following form (Krzysztofik 
et al., 2017): 
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where: gg yJ ,  – angles of deviation of internal and external frames of the gyroscope (angles determining 

the position of the gyroscope axis in space); gg yJ !! ,  – angular velocities of internal and external 

deviations of the gyroscope; gkgo JJ ,  – longitudinal and transverse moment of inertia of the rotor; gn  – 

speed of own rotations of the rotor; cb hh ,  – coefficients of damping in the suspension bearings. 

And bU  and cU  controls are presented in the following form: 
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where: se ,  – angles determining the location of the target observation line; se !!,  – angular velocities 
defining the position of the target observation line. 

Using the Matlab function, the matrix of K reinforcements appearing in equation (3) has the form (Lewis 
et al., 2012; Tewari, 2002): 
 ( )RQ,B,J,K lqr=  (4) 

Matrix J constituting the argument of lqr function is a Jacobian of GS with the following components: 

011 =J , 112 =J , 013 =J , 014 =J  

( ) gkgggogggk JnJJJ /sin2cos2
21 JyJy !! +-=  

gkb JJ /22 h-= , 023 =J , ( ) gkgggogggk JnJJJ /cos2sin24 JJy --= !  

031 =J , 032 =J , 033 =J , 134 =J  
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( ) ggkgggogggk JnJJJ JJJy 2
42 cos/cos2sin += ! , 043 =J , ( ) ggkgggkc JJJ JJJh 2

44 cos/2sin!+-=  

B is matrix of control, Q is a positive semi-definite square, symmetric matrix called the state weighting 
matrix; R is a positive definite square, symmetric matrix called the control cost matrix. 

3. Numerical example and obtained results 

Similarly as in the paper (Koruba and Krzysztofik, 2017), we will consider the tracking of a moving point 
in space by the target coordinator placed on Earth. In the following simulation tests, the following 
parameter values were adopted: 

1) Gyroscopic system parameters:  

a) longitudinal and transverse moment of inertia of the rotor: 
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24 kgm105  Jgo
-×= , 24 kgm1052  .Jgk

-×= , gkcb Jcc /1==  

b) speed of own rotations of the rotor: 

502200 2 +×= tng  for 50,0 .tÎ  (the speed increases from 50 to 600 rad/s in 0.5 s), 

( ) 505.02200 2 +-×= tng  for 5.0,0Ît  (the speed decreases from 600 to 50 rad/s in 0.5 s), 

c) damping in suspension bearings: 

01.016.0 2 +== tcb hh  for 5.0,0Ît  (damping increases from 0.01 to 0.05 Nms in 0.5 s), 

2)    Program movement of a point (target) in space:  
220 ωt.aε += , ωtbσ +=  where: 10.a = , 20.b -= , 5.1=w  

3) LQR regulator parameters: 

B = [0 0; cb 0; 0 0;0 cc]; Q = [1000 0 0 0; 0 10 0 0; 0 0 1000 0; 0 0 0 10]; R = [0.5 0; 0 0.5] 

4)  Optimal parameters of PD regulator: 5.5=bk ; bc kk 42
2
1

+= , bg kh 42+= . 

The studies were conducted with an integration step amounting to 00001.0=dt  (Baranowski, 2013). 
Some results of the GS control simulation in the target tracking process are presented and compared using 
the optimal PD regulator and the modified LQR regulator. The graphs shown in Figs. 1-3 show that the 
control using the modified LQR method using Jacobian J works more correctly than with the optimal PD 
regulator – the axis of the gyroscopic system accurately reproduces the motion set along the observation 
line of the moving point in space. 

 
Fig. 1: Trajectories of the performed and desired motion with the use optimal PD and modified LQR for 

increasing rotor speed 

 
Fig. 2: Trajectories of the performed and desired motion with the use optimal PD and modified LQR for 

decreasing rotor speed 
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Fig. 3: Trajectories of the performed and desired motion with the use optimal PD and modified LQR for 

changing damping in suspension bearings 

4. Conclusions 

The example of controlling of the non-stationary gyroscopic system with the modified LQR method 
during the tracking of the target presented in this paper, allows to conclude that it is more effective than 
using the optimal classic PD regulator. The example analyzed in this article shows that tracking of a 
moving target by GS is possible even with a significant change in the speed of own rotation and changes 
in damping in gyroscope suspension bearings. It should be emphasized that the results of the research 
included in this paper (similarly as in the paper (Koruba and Krzysztofik, 2017) showed a significant 
improvement in the precision of the gyroscopic system control (about 10%), and this is decisive in 
reaching the target in missile homing systems using this type of GS. Further research will also concern 
the lack of knowledge of initial conditions and incomplete measurement data in gyroscopic observation 
and tracking systems. 
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