
1. Introduction

Lattice or particle formulations of models are suitable for description of macroscopic behaviour of quasi-
brittle materials. The medium is discretized “a priori” according to an idealization of its internal structure.
The particles or lattice are defined by geometrical parameters which equip these type of formulations with
inherent characteristic lengths and they have the intrinsic ability of simulating the geometrical features of
material internal structure. This enables to accurately simulate a damage initiation and crack propagation at
various length scales, but the computational demands are significant. Here we employ the so-called Lattice
Discrete Particle Model (LDPM) recently proposed by Cusatis et al. (2011a). The LDPM was calibrated
and validated against both quasi-static and dynamic loading conditions and it was demonstrated to possess
superior predictive capability, see Cusatis et al. (2011b). However, the calibration procedure was performed
on a basis of hand-fitting, which makes any further practical applications of the model difficult.

Here we present the Bayesian identification of the model parameters from synthetic experimental data
corresponding to notched three-point-bending tests and cube compression tests. The Bayesian approach
solves the inverse problem as well-possed and quantifies posterior uncertainty in parameters by combining
a prior knowledge about the realistic parameter values and uncertainty contained in measurement errors. In
more details, we obtain the posterior distributions by robust Markov chain Monte Carlo sampling, where
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the computational burden, arising from repeated model simulations, is overcome by using a polynomial
chaos-based surrogate of the LDPM. Moreover, this model approximation allows to eradicate the original
LDPM stochasticity and involve the corresponding uncertainty estimated from the approximation error to
the identification procedure.

2. Lattice discrete particle model

In this paper the LDPM is employed to accurately describe the macroscopic behaviour of concrete in elas-
tic, fracturing, softening, and hardening regimes (Cusatis et al. (2011a,b)). The examined material model
is based on lattice or particle formulations in which materials are discretized “a priori” according to an ide-
alization of their internal structure. In the present study the basic material properties of the tested concrete
mix are kept constant for all simulations. Note that these parameters influence the generation of concrete
meso-structure, see Table 1. However, the seed number, governing the sampling of cumulative distribution

Tab. 1: Values of parameters governing the generation of concrete meso-structure
Material property Unit Value

Minimum particle size d0 mm 4
Maximum particle size da mm 16
Cement content c kg/m3 240
Water to cement ratio w/c - 0.83
Aggregate to cement a/c - 8.83
Fuller coefficient nF - 0.5
Concrete density ρ kg/m3 2400

function of concrete granulometric distributions by a random number generator, is kept random. The model
response is influenced by the specific distribution of particles which causes stochasticity of the model.

The parameters of the mathematical model which are kept constant or calibrated by the identification pro-
cedure of prescribed uniform prior distribution are summarised in Table 2.

Tab. 2: Values of material model parameters used in the numerical simulations
Material property Unit Value (range)

Normal modulus E0 MPa 20000− 70000
Shear-normal coupling α - 0.2− 0.3
Tensile strength σt MPa 1.5− 5
Tensile characteristic length lt mm 50− 300
Softening exponent nt - 0.1− 1
Shear/strength ratio σs/σt - 1.5− 8
Initial friction µ0 - 0.001− 0.5
Compressive strength σc0 MPa σc0 = 40σt
Transitional stress σN0 MPa σN0 = 240σt

Initial hardening modulus ratio Hc0/E0 - 0.4
Transitional strain ratio κc0 - 4
Deviatoric strain threshold ratio κc1 - 1.0
Deviatoric damage parameter κc2 - 5.0
Asymptotic friction µ∞ - 0.0
Densification ratio Ed/E0 - 1.0
Volumetric-deviatoric coupling β - 0

3. Identification procedure

The identification of seven material model parameters for concrete is based on two types of experiments,
specifically a uniaxial compression test and a notched three-point-bending test. In order to verify the pro-
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posed identification method, the synthetic experimental data are used in a form of 10 data sets with three
repetitions of each test. The corresponding design of experiments is obtained by a stratified procedure
called Latin hypercube sampling (LHS) which is able to respect the prescribed probability distributions
(Janouchová and Kučerová (2013)). For convenience and readability, data are presented in terms of nomi-
nal stress σN and nominal strain εN . The most traditional tests to characterise concrete is the compression
test performed on cubes of 150 mm side length. The nominal values are defined as

σN =
F

a2
and εN =

u

a
(1)

where F is the applied load, u denotes the load point displacement a is a side length. The fracture properties
of concrete are characterised by means of the notched three-point-bending test. The nominal stress and
strain are

σN =
3Fl

dh2
and εN =

CMOD

h
(2)

where l stands for the beam span, h, d are the beam height and width, respectively. CMOD is the crack
mouth opening displacement measured over the notch.

Moreover, to eliminate the error in measurement caused by the testing machine stiffness, the inelastic part
of the strain is used for the model calibration

εinelN = εN − σN (1/K) (3)

where K is the corresponding elastic stiffness. To capture the elastic properties of the model, the initial
elastic part of the cube compression test is utilised.

In order to make the identification process feasible, we employ polynomial chaos expansion (PCE) for
the approximation of the model response in the stochastic space (Marzouk et al. (2007)). PCE can be
used to approximate the response with respect to the probability distribution of the random variables. The
convergence of the approximation error with the increasing number of polynomial terms is optimal in case
of orthogonal polynomials of a special type corresponding to the probability distribution of the underlying
variables (Xiu and Karniadakis (2002)). In particular, we employ Legendre polynomials of the second order
associated with the uniform distribution. The PCE coefficients are computed with help of linear regression
(Blatman and Sudret (2010a)), which is based on a set of 400 model simulations drawn by LHS.

Probabilistic parameter estimation allowing to update the initial knowledge about the parameter values by
processing the experimental data is based on Bayes’ formula (Tarantola (2005)). The updated joint prob-
ability distribution of the parameters is formulated as a product of prescribed uniform prior distribution
with bounds given in Table 2 and likelihood function arising from the uncertainties which correspond to
the experimental errors and theoretical errors caused by approximating the stochastic LDPM by deter-
ministic PCE-based surrogate. The experimental errors are based on expert knowledge and considered as
independent normally distributed random variables with zeros mean values and prescribed standard de-
viations. Specifically, in the identification process we consider from the compression test the measured
stress σN discretized into 200 strain steps with the error ε ∼ N(0, 1.32) and elastic stiffness K with error
ε ∼ N(0, 1502), from the notched three-point-bending test the measured stress σN discretized into 200
strain steps with the error ε ∼ N(0, 0.32). On the other side, the theoretical errors are dependent normally
distributed random variables whose covariance matrix is estimated on a basis of approximation errors for
training set of model simulations. To obtain the posterior distribution, we employ Markov chain Monte
Carlo sampling method (Gilks et al. (2005)). The Metropolis algorithm (Spall (2003)) is used to construct
the chain of a million posterior samples for each data set.

Fig. 1 shows the obtained results of executed identification processes in the sense of model responses. There
are 400 training model responses depicted by grey colour in the background. For the sake of clarity, the
only five out of ten data sets are depicted in the graphs. The data corresponding to one data set are displayed
by one colour in both cases of experiment types. The solid lines shows the synthetic experimental data and
the filled areas correspond to the identification results. More specifically, the displayed areas are defined by
spread equal to identified mean values ± standard deviations, so they contains stochasticity of the LDPM
as well as uncertainties rising from experimental measurements and predict the regions of highly probable
occurrence of reality. It is obvious that the presented identification procedure provides results, in a form
of joint probability distribution of model parameters, with very good predictive ability for the LDPM. On
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the basis of these results, the proposed identification method is verified to be efficiently used for the LDPM
calibration.
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Fig. 1: Gray model output curves for construction of approximation vs. colourful results of verification.
Solid lines are synthetic experimental data while filled areas represent identified regions of high prediction
probability. Each colour corresponds to one verification data set.

4. Conclusions

This contribution deals with probabilistic parameter identification of lattice discrete particle model for con-
crete. The presented identification procedure is based on polynomial approximation of the stochastic model
response and Bayesian inference of the underlying model parameters. The proposed method allows to
calibrate the LDPM from a uniaxial compression test and a notched three-point-bending test, which was
successfully verified on the basis of ten sets of synthetic experimental data. The future work includes
method validation based on real experimental data.
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