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1. Introduction

Isogeometric analysis (IGA), an approach using the same basis functions for both geometry description 
and unknown approximation, is an alternative to the standard finite element method (FEM) which can be 
especially profitable for problems of curved geometries. In IGA, the exact geometry representation using 
NURBS basis functions is directly used for the analysis and unknown approximation, therefore the loss 
of accuracy caused by geometry approximation is avoided. The model is based on spline basis functions, 
which allows to describe arbitrarily curved geometries.

In this paper, the focus is on the isogeometric beam element based on application of Timoshenko beam 
theory, see Zhang et. al (2016). Even though the isogeometric approach can enhance the analysis in the 
exactness of geometry description, this formulation (as well as standard FEM formulation) still suffers from 
numerical locking. To overcome the locking phenomena, analogous techniques to standard FEM locking 
treatment have been studied, see Echter and Bischoff (2010); Bouclier and Elguedj (2012). The presented 
formulation uses B̄-method to overcome the locking phenomena. This method has been chosen for its 
possibility of use with no prior knowledge of the continuity or degree of the interpolation.

Our goal is to enable the application of the beam element to the analysis of the gridshell structures. These 
structures are formed from the initially planar grid of mutually connected beams which is subsequently 
deformed into the desired shape. Possibility of modeling such a structure using isogeometric approach 
can enhance overall design process as the isogeometric analysis can be easily embedded within design 
environment thanks to the sharing of the model by both geometry and the analysis. Nevertheless, the 
isogeometric formulation fails to describe the concentrated moment and force loadings imposed in joints of 
the individual beams. This paper documents this problem and outlines its possible solution which allows 
the consecutive development of the interactive design tool for gridshell structures.
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Abstract: Isogeometric analysis has indisputable benefits for the analysis of curved beams. Due to the use of
spline basis function (usually NURBS) for both geometry description and unknown approximation, the CAD
geometry representation can be directly used for the analysis. Therefore no transformation between CAD and
FEM models is needed and the overall design process is more efficient and more accurate. The presented paper
concentrates on possibilities of application of IGA to modeling of gridshell structures. The mutual connections
of gridshell beams yield in concentrated force and moment loadings, which cause oscillations in numerical
solution. This problem is documented on a simple example and the possible solution is proposed.
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2. Isogeometric Timoshenko beam element

The main difference between standard FEM and IGA is in the type of basis functions which are used for the
analysis. While standard finite elements are based on polynomial basis functions, isogeometric approach
employs splines. The presented formulation uses NURBS (Non-Uniform B-Splines), as they are probably
the most widespread technology in CAD industry.

In IGA, the computational domain is firstly divided into patches, which are further divided into knotspans
(seen as elements). Important aspect of NURBS basis functions is that they are generally non-interpolatory
and the higher continuity between elements (in so called knots) can be obtained naturally (unlikeC0 in stan-
dard FEM). In the knots, the continuity can be locally decreased up to C0 which imposes the interpolatory
behavior of the functions at the particular point.

The formulation of the three-dimensional beam element is derived in local coordinate system (t, n, b),
where t, n, b are tangent, normal and binormal vectors and where the curvilinear coordinate s is measured
along the centerline of the beam. There are six independent unknowns: tangential displacement ut, normal
displacement un, binormal displacement ub and rotations θt, θn, θb. A strain-displacement matrix B is
defined as

ε = Br, (1)

where ε = {εm, γn, γb, χt, χn, χb}T and r = {ut, un, ub, θt, θn, θb}T . B is derived from the following
relations for membrane strain εm, shear strains γn and γb, torsional strain χt, and bending strains χn and
χb

εm = u′t − κun, γn = κut + u′n − τub − θb, γb = τun + u′b + θn,

χt = θ′t − κθn, χn = κθt + θ′n − τθb, χb = τθn + θ′b.

Curvature κ and torsion τ are given as

κ =

∣∣∣∣
∣∣∣∣
d2r(s)

ds2

∣∣∣∣
∣∣∣∣ τ =

dn(s)

ds
b(s),

where r(s) is the position vector. The material stiffness matrixD is given by constitutive relations

N = EAεm, Qn = GAnγn, Qb = GAbγb,

Mt = GIkχb, Mn = EInχn, Mb = GIbχb.

Finaly, the element stiffness matrixK is defined as

K =

∫ L

0
BTDB ds,

where the integral is evaluated using Gaussian quadrature, which is not exact for NURBS functions, but it
has sufficient accuracy.

3. Numerical locking

Due to the same approximation order for displacements and for rotations, the element formulation suffers
from numerical locking. In classical FEM, the reduced integration is typically used to overcome this prob-
lem, mainly for its computational efficiency. In Isogeometric analysis its use is complicated due to the fact,
that the optimal reduced integration rule depends on the choice of approximation order and continuity and
such a rule is hard to be determined. On the contrary, Discrete shear gap (DSG) method or B̄-method can
be used independently on the choice of approximation, the later is used in the presented implementation of
the element.
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Fig. 1: Gridshell structure modeled and analysed in OOFEM (see Patzák (2018)).

3.1. B̄ method

The main idea of the method is to project membrane strain εm and shear strains γn, γb onto a basis of lower
order. For example, the contribution of membrane strain εm to the B̄ matrix is

B̄m =
[
B̄

1
m B̄

2
m 0 0 0 0

]
,

where for example

B̄
1
mij

=

∫ L

0
ÑiN

′
j ds

and where Nj is the jth basis function of the original basis and Ñi is the ith basis function of the lower
order basis. The membrane contribution to stiffness matrixKm is

Km = EA B̄
T
mM̃

−1
B̄m

where M̃ is the element “mass matrix” calculated in the lower order basis

M̃ij =

∫ L

0
ÑiÑj ds.

The analogical procedure can be followed also for the shear strains γn and γb.

4. Application to gridshells

The design of gridshell structures (see Fig. 1) is complicated process, as the resulting shape of structure
depends on initial grid as well as on the history of boundary conditions. In practice, the physical model
is often used to determine the shape of the structure and the initial grid at the same time. Introducing
Isogeometric analysis into a design of gridshells simplifies the design process as the problem can be easily
recalculated when initial grid or boundary conditions change and the resulting shape can be immediately
illustrated.

Isogeometric approach offers a possibility to model each grid lath by a single patch. Such a model requires
to add additional constraints to enforce the compatibility in joints. To support this approach, the special
boundary condition based on Lagrange multipliers method has been implemented. The potential energy is
enhanced by an additional term yielding the required continuity

Wint +
∑

k

λk(r̄ki − r̄kj ) = Wext,

where λk is vector of Lagrange multipliers for kth joint, r̄ki and r̄kj are the vectors of constrained unknowns
at the kth joints on the ith and jth beams, respectively.

The problem of the presented formulation is that the Lagrange multiplier method results in concentrated
force and moment loadings at the joints positions (represented by Lagrange multipliers). The higher con-
tinuity of NURBS basis functions along the entire patch results in oscillations in the internal forces, as the
basis functions are not able to represent exact solution with discontinuities in internal forces corresponding
to concentrated loadings. This problem is illustrated on the example of simply supported beam subjected
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Fig. 2: Example: Simply supported beam subjected to concentrated force in the middle (L = 1, F = 1).
When the force is located at the point with C2 continuity, the oscilations in the numerical solution are
observed, while for the C0 continuity the numerical solution overlaps the exact solution.

to the concentrated force in the middle. For the analysis, thirteen-knotspans patch with the cubic NURBS
approximation has been used. The force has been located at the interior knot with C2 continuity. This
results in oscillations in both shear force and bending moment. On the other hand, when the multiplicity in
the particular knot is increased resulting in the C0 continuity, the oscillations in the numerical solutions are
sufficiently removed. See Fig. 2 for the results. Note, that the increasing knot multiplicity and decreasing
the continuity up to C0 is analogous to modeling each segment between joints by a single isogeometric
element.

5. Conclusions

The three-dimensional isogeometric beam element formulation has been presented. The element is based on
Timoshenko beam theory and the B̄ method is used to remove the numerical locking. The enforcement of
continuity of displacements and rotations in joints inevitably leads to application of concentrated forces and
moments. Unfortunately, the oscillations in numerical solution of gridshell structure has been documented.
It has been shown, that this problem can be solved by a decreasing continuity at the particular location.

Isogeometric analysis can be used to model gridshell structures, but the presented formulation has to be ex-
tended for the nonlinear analysis, due to the large deformations. In the future work, our goal is to implement
geometrically nonlinear formulation of the element and consequently to develop the interactive design tool
for the gridshell structures.
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