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Abstract: Elastic properties of virus shells (capsids) are important as they protect the virus genome and play 

important role in virus internalization (the process of virus entering the cell). These properties can also be 

measured experimentally by direct deformation of the capsid with a microscope’s tip. A 3-D mathematical 

model of a virus under an external non-stationary load is proposed in this paper. The apparatus of the 

boundary value problems of mathematical physics was used during modeling. The stated initial boundary 

value problem of elasticity was solved with the help of the integral transformation method and the method of 

discontinuous solutions. As a result, the analytical solution of the problem was obtained in Laplace 

transformation domain. The numerical calculations of the virus elastic characteristics were illustrated for 

the case of a steady-state oscillation. 
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1. Introduction 

Mesoscopic properties of viruses as elastic bodies are important biologically as they allow to investigate 

the physics of the virus particles in various biologically relevant processes. Establishing a virus 

mathematical model is necessary to represent the effect of parameters variation on the behaviour of the 

virus as a dynamical system. Such mathematical models based on the reasonable biological assumptions 

were obtained earlier using three main interdisciplinary approaches:  

1) based on a hydrodynamic theory (Markesteijn, 2014, Korotkin, 2016 and Scukins, 2015);  

2) using the theory of numerical methods for solving hydrodynamic and elasticity non-linear problems 

(Polles, 2013 and Roos, 2010, Gibbons, 2007, Buenemann, 2007, Polles, 2013 and Zink, 2009); 

3) based on the linear elasticity models (Zink, 2009, Buenemann, 2008 and Zandi, 2005). 

These models allowed to obtain many important characteristics, but they could not fully describe the virus 

as a 3-D elastic object. In the proposed paper the authors first propose to use the full system of linear 

elasticity's motion equations for the virus wave field representation. It allows to take into consideration 

the virus 3-D structure and to obtain new qualitative characteristics of the virus stresses and 

displacements. 

2. The statement of the problem 

A virus PCV2 is modelled by an elastic hollow sphere occupying the area 

1 2 ,0 2 ,R r R             in the spherical coordinate system. The equations of motion are 

written with regard to the displacements      , , , , , , , , , , ,ru u r t v u r t w u r t          

(Nowacki, 1970). It is assumed that the virus is filled with an acoustic medium modelling the inside 

content of the virus composing of either the genome for the case of the real virus, or aqueous solution 

containing necessary ions in the case of an empty capsid (the so called Virus Like Particle). The virus is 
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surrounded by the aqueous solution mimicking the cellular environment, which is also described by the 

ideal Newton liquid model. The wave potentials  , , ,i r t   of the external
 
(i = 2) and the internal 

(i = 1) acoustic media satisfy the wave equations (Guz, 1982).  It is assumed that adhesion takes place at 

the contact of the surfaces of the virus and the surrounding acoustic media 

 

Fig. 1: The geometry of the problem. 
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All functions on the right hand sides of the equalities (1), (2) are known functions. It is possible also to 

formulate on a virus’s surfaces as the boundary conditions of first main elasticity problem, so and the 

mixed boundary conditions (in last case the solution is solved with the method of boundary integral 

equations). Zero initial conditions are fulfilled. One has to determine the wave field under the influence of 

a spherical pressure wave  0 , , ,r t   falling on the virus external surface at the moment t = 0. 

3. The methods of solution 

Solution method is based on the application of the integral transformation method and the method of 

discontinuous solutions (Popov, 1982). The Laplace transformation with respect to the variable t and the 

finite Fourier transformation with respect to the variable φ are applied to the system of the equations of 

motion and the boundary conditions (1), (2). To construct the solution of the boundary value problem in 

the transformation domain one must use the discontinuous solutions of the motion equations for a 

spherical defect, which were constructed earlier in (Vaysfeld, 2002).
 
 

The transformations of the unknown functions are presented as a superposition of the functions 
1 2 1 2 1 2, ,sn sn sn sn sn sn sn sn snu u u v v v w w w      , where indexes s and n denote the parameters of the 

Laplace and the Fourier transformations respectively, the
 

upper index 1 denotes the mechanical 
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characteristics, which are discontinuous on the interior surface of the sphere, the upper index 2 denotes 

the mechanical characteristics, which are discontinuous on the external surface of the spherical shell 
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where  , , , , ,r r r ru u u u      . 

Similar representations for the wave potentials are constructed. They lead to 
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The proposed solution method allowed to construct the representations for the wave potentials, 

displacements, and stresses of the elastic medium in terms of the Laplace transformations.  
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. The formulae for the displacements and the stresses are 

analogous. 

4. Numerical results 
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The obtained formulae were used to illustrate the case of steady-state oscillations, the homogeneous 

boundary conditions (2) and the conditions  , , 0, 1,2iT t i    . The elastic constants of the virus, 

namely the Young module and the Poisson ratio, were determined with the help of LAMMPS Molecular 

Dynamics package. The sea water was selected as the external acoustic medium, and water was selected 

as the internal acoustic medium. The mechanical parameters of these liquids were taken for the modelling 

of the liquids inside and outside the virus. The stresses on the surfaces of the sphere were calculated. The 

analysis was conducted depending on the incident wave's angle. 

5. Conclusions 

1. 3-D mathematical model of a PCV2 virus was constructed on using dynamic elasticity boundary 

value problem. The elastic constants of the virus (the Poisson ratio, the Young module) were 

determined with the help of LAMMPS package. 

2. Formulae determining the virus wave field under the acoustic pressure wave were obtained. 

3. This model will serve as the first step in developing a more realistic models of viruses with varying 

density of the capsid, its geometry and, possibly, elastic properties. 
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