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Abstract: The paper deals with tracking control for robots-manipulators, where the dynamics is described 

by means of Hamiltonian mechanics. This way leads to different physical descriptive quantities used in 

control design. In the paper, the model-oriented Lyapunov-based control is considered. It is introduced in 

novel formulation by means of Hamiltonian mechanics. 
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1. Introduction 

Engineers usually use classical vector oriented Newton’s mechanics. Force interactions can be also 

described by scalar functions, recall Lagrangian or Hamiltonian formalism (Golstein, 1950), (Fasano, 

2004). The majority of scientists use Lagrange’s equations for expression of robot dynamics (Siciliano, 

2008), and robot control too. Generally, there are some limits for positions, velocities etc. These limits are 

constant for all configurations of robot (Arimoto, 1996). The state space, for control, is represented by 

positions and velocities, therefore by kinematic quantities. Momentums are not respected here. But, 

momentums change very quickly. Hence, the study of control methods may be interesting from 

Hamiltonian point of view too. Hamiltonian formalism with using a modified Hamiltonian was used as 

new function (Wen, 1988). A novel constructive method presented with a new Hamiltonian formulation 

in (Wang, 2005). The paper Teo (2013) presents a method for design of a set-point controller. The robot 

is described as a port-Hamiltonian system. In this contribution, we do not want continue similar way. We 

shall present a new exponentially stable method which may be used for electromechanical systems, 

especially for robot-manipulators. 

2. Hamiltonian formalism 

The basic ideas of Hamiltonian formalism and its using in the robot dynamics can be founded in the paper 

Záda (2016), therefore we shall omit them. The robot dynamics can be described by  
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The second form of these equations suitable for control of robot-manipulators can be represented by the 

set (Záda, 2016) of equations as follows 
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Now we return our attention to the problem of robot control. 
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3. Tracking control of robotic systems 

The tracking control problem in the joint space consists of a given time-varying trajectory qd (t) and its 

derivatives. The robot must follow this trajectory with sufficiently precision. Let us define vectors 

 zpyAeeMzqqe  ,)(, d  (5) 

Let the controlled system be controlled by the control law, which hides model of controlled system  
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So (5) and (6) represent our control system (model of controller). Matrices A and B are non-singular. 

They will be chosen lately. The vector y represents an estimation of the momentum p, and z is a 

difference between actual momentum p of the robot and z. If we use the equations (4) and (6) then we can 

derive a feedback equation for control process 
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Let a positive definite quadratic form be defined in the form 
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Then its time derivative along the trajectory given by (7) leads to the following inequality 

 01  
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Generally, the multiplication of matrices in a quadratic form is positive definite. Hence the function W 

sinks in time. From (9) follows the chain of inequalities 
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Let us define the smallest proper value of the matrix M
-1
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Where x(q), in (11), is a proper vector, Q is a working area of the controlled system. Then min> 0 and for 

all z it is valid 
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From these relations we derive the inequalities 
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Since zzz
T

2
 and 0W(t)W(0) we see that zL2L . Similarly let us define following values 
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The numbers (14) and (15) are positive and hence the following inequalities (16) are valid too 
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Remember, these inequalities of these quadratic forms are valid for all z, and, as usual, they can be simply 

written as 

 IqMI Mm   )(  (17) 

The reader can prove that from (16) it can be derived the result 
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Then, we can obtain a new inequality 
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and so we have obtained the result 
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Le the multiplication of the proper values be denoted as ma min . The (20) may be rewritten as 
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Integration of (21) leads to the interesting estimation 
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Now, from (8) and (18) we can derive the following chain of inequalities 
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Hence, the variable z is exponentially bounded from above, how we see it from following inequality 
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The parameter c1 depends only on initial estimation of the vector z(0). Now it can be seen that for t 

the variable z0. Let us study the differential equation (18) rewritten in the form 
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This equation has a solution, for initial condition e0= e(0), 
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Using classical inequalities for norms of matrices and vectors we can derive the following estimation  
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where c2 and b are some positive constants. Hence, for t the error vector e0, too. 

Proof of (27): Let the solution (26) be considered. Then we obtain, with using norm for matrices, 
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Because A is stable, there are positive constants k and c, such that for all s  0 (here e is the Euler 

number) it is valid 
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So we can write (e is the Euler number) the inequality 
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The working space Q of all admissible vectors q is bounded, hence there are constant kM such that  
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Hence with using these facts and (26) we can write 
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If c = a then the integral in (32) is t. Generally it is c  a. But the case c = a can be included in this general 

case, if we replace c by any smaller positive c. So we can rewrite (32) 
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Let b = min{a, c}. Then 
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and so (33) can be expressed in the following form 
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Hence (35) has really the form of (27) for suitable constant c2 . Let us rewrite the (25) in the form 

 eAzMe  1  (36) 

Then we obtain the following chain of inequalities 

 eAzMe  1  (37) 

Now with using (24), (27) and (31), respectively, we obtain the following inequality with suitably 

constant c3.  

 btect  3)(e  (38) 

Here c3 is the positive constant, too. Hence, if t then the signal, de/dt, converges to 0. Relations (27) 

and (38) shove that the control algorithm is exponentially stable. 

It is necessary to choice the matrix A to be stable. That is, its proper values must be in the left side of the 

complex plane. The matrix M
-1

B must be positive definite. Because M and so M
-1

 are positive definite 

matrices, it suffices to choice a matrix B to be diagonal with positive coefficients on diagonal. Then the 

multiplication M
-1

B is positive definite too. For simplicity, the matrix B can be chosen as B = b0I, where 

b0 is any function or constant, respectively. An alternative choice is to define a matrix B0 which is 

positive definite and then define matrix B as B = M(q)B0. Then the matrix M
-1

B = B0 in is automatically 

positive definite. 

4. Conclusions 

In this article was developed the mathematically oriented text which describes the way how to control 

robots along a desired trajectory. The proved mathematical formulae show that the desired method is 

exponentially stable. This result is interesting for applications, because the exponential stability 

automatically leads to robustness of asked algorithm of control.  
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