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Abstract: The present paper is concerned with the evaluation of effective properties and macroscopic tensile 

strengths of unidirectional fibrous composites made of basal fibers bonded to a ceramic matrix. The actual 

random distribution of fibers in transverse plane is taken into through the application of statistically 

equivalent periodic unit cell. A simple maximum stress failure criterion, combined with a linear format of 

traction separation law, is used to track the onset and subsequent gradual evolution of damage in the 

composite. The resulting macroscopic stress-strain curves are finally examined to define the searched 

macroscopic strength of the composite needed, e.g. in the meso-scale analysis of plain weave textile 

composites.  
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1. Introduction 

Owing to a relatively low cost at one hand and good mechanical properties comparable to glass fibers 

(Černý et al., 2007), the basalt fiber based composites have received considerable attention in recent 

years. Due to their good thermal stability the basalt fibers can serve as reinforcement of ceramic matrices 

manufactured by means of heat treatment such as pyrolysis of, e.g. polysiloxane resins (Glogar et al., 

2007a, Černý et al., 2009). When referring to this type of composite, a number of studies addressing 

fracture properties is also available (Glogar et al., 2007b).  

Apart from elastic behavior, see e.g. (Vorel et al., 2015), little attention, however, has been accorded to 

composite system reinforced by textiles. This might be attributed to the complexity of the microstructure 

at various scales as see in Fig. 1. To reflect a random nature of fiber distribution in individual yarns as 

well as various imperfection at the level of plies developed during fabrication, the concept of statistically 

equivalent periodic unit cell (SEPUC) is usually adopted to define a suitable representative volume 

element at a respective scale (Šejnoha et al., 2013).  

a)        b)         c)  

 Micro and meso-structure of basal fiber/ceramic matrix plain weave textile composites:  Fig. 1:

a) level of yarns, b) binary image of the 8-layer laminate cross-section, c) reconstructed CT-scan.  

Because of considerable brittleness of the matrix and fibers, the analysis beyond elasticity often draws on 

the concept of damage mechanics, see e.g. (Šmilauer et al., 2011, Zhou et al., 2013) with particular 

application to textiles. This approach is also adopted in the present study. Due to space limitation we 
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address the level of yarns only by examining the nonlinear response of the unidirectional fibrous 

composite, see Fig. 1a.  

2. Theoretical formulation 

The influence of random distribution fibers in the cross-sectional plane on the macroscopic response is 

investigated by considering two different SEPUC plotted in Fig. 2. Their construction is described in 

detail in (Šejnoha et al., 2013). 

a)             b)   

 Examples of SEPUC at the level of yarns: a) two-fiber SEPUC-1, b) five-fiber SEPUC-2. Fig. 2:

The elastic material properties partially taken from (Černý et al., 2009) and partially derived from 

nanoindentation are listed in Tab. 1.  

Tab. 1: Material parameters of individual phases. 

Material E [GPa] G [GPa] υ [-] Gf [N/mm] ST [GPa] 

Fiber - longitudinal direction 100 25 0.24 - 2.0 

Fiber – transverse direction 18 6.4 0.4 - 0.5 

Matrix 80 32.3 0.24 0.001 0.08 

2.1. Evaluation of effective properties 

To verify the computational implementation we begin by deriving the effective elastic properties using 

both the 1
st
 order homogenization approach and the Mori-Tanaka method (Vorel et al., 2015), where the 

latter one is also discussed in details in (Šejnoha et al., 2013). In the framework of 1
st
 order 

homogenization we begin by writing the local displacements and local strains in terms of macroscopically 

constant strain 𝑬 and fluctuation displacement 𝑢∗and strain 𝜀∗ fields, which are periodic, as 

 𝑢𝑖(𝑥) = 𝐸𝑖𝑗𝑥𝑗 + 𝑢𝑖
∗(𝑥),     𝜀(𝑥) = 𝑬 + 𝜀∗(𝑥). (1) 

Applying the Hill’s lemma yields the system of equations to be solved for unknown displacements and 

macroscopic strains 

 𝛿𝑬𝑇𝚺 = 𝛿𝑬𝑇(〈𝑳(𝑥)〉𝑬 + 〈𝑳(𝑥)𝜀∗(𝑥)〉), (2) 

0 = 〈𝛿𝜀∗𝑇(𝑥)𝑳(𝑥)〉𝑬 + 〈𝛿𝜀∗𝑇(𝑥)𝑳(𝑥)𝜀∗(𝑥)〉, 

where 𝚺 represents the prescribed macroscopic stress. Note that under strain loading (E is prescribed) 

conditions the first equation disappears since 𝛿𝑬𝑇 = 0. Solving Eq. (2) for six unit load vectors then 

yields the macroscopic compliance matrix. The extracted effective moduli, together with the Mori-Tanaka 

results, are listed in Tab. 1. Evidently, in case of elasticity, the response provided by the two SEPUC 

agrees well with the Mori-Tanaka predictions. 

Tab. 2: Effective elastic moduli. 

 
E11 

[GPa] 

E22 

[GPa] 

E33 

[GPa] 

G23 

[GPa] 

G31 

[GPa] 

G12 

[GPa] 

cf 

[-] 

SEPUC-1 – FEM 30.9 29.8 92.4 27.5 27.6 12.4 0.62 

SEPUC-2 – FEM 29.9 30.7 92.4 27.6 27.5 12.6 0.62 

Mori-Tanaka method 32.6 32.6 92.4 27.6 27.6 12.1 0.62 
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2.2. Progressive damage formulation 

The present analysis builds upon classical continuum damage mechanics with the crack band model to 

yield objective results. To proceed with the formulation, we begin by writing the constitutive equation for 

1D model in the form 

 𝜀 =
𝜎

𝐸
+ 𝜀𝑐,     𝜀𝑐 =

𝑤𝑐

𝐿𝑠
= (1 − 𝐷)𝐸𝜀, (3) 

where 𝜀𝑐 , 𝑤𝑐  are the crack strain and the crack opening displacement, respectively, 𝐿𝑠 = √𝑉𝑒
3

 represents 

the size of the band to which the cracks are localized (here related to the finite element volume 𝑉𝑒), and 𝐷 

is the damage parameter to reflect a material degradation with the evolution of cracks. In the context of 

damage mechanics, this is associated with a suitable traction-separation law, which is assumed linear in 

the present analysis, see Fig. 3. 

a)                 b)   

 Linear softening law: a) stress-crack opening displacement diagram,  Fig. 3:

b) stress-strain diagram with linear softening. 

The principal material parameter, entering the nonlinear constitutive model, is the fracture energy Gf 

[N/mm], which corresponds to the area under the stress-crack displacement opening diagram in Fig. 3a 

 𝐺𝑓 = ∫ 𝜎d𝑤𝑐
𝑤𝑐

𝑓

0
= 𝐿𝑠 ∫ (𝜀 − 𝜀𝑒𝑙)d𝜎

𝑓𝑑

0
= 𝐿𝑠 ∫ 𝜎d𝜀

𝜀𝑓

0
. (4) 

It follows from Eq. (4) and Fig. 3(b) that 

 𝐺𝑓 = 𝐿𝑠 (
1

2
𝑓𝑑𝜀𝑓) > 𝐺𝑓

𝑚𝑖𝑛 =
𝑓𝑑

2𝐿𝑠

2𝐸
, (5) 

 𝜀𝑓 =
2𝐺𝑓

𝐿𝑠𝑓𝑑
,     𝑤𝑐

𝑓
= 𝜀𝑓𝐿𝑠 =

2𝐺𝑓

𝑓𝑑
. (6) 

Clearly, while the fracture energy is a material property independent of mesh, the failure strain depends 

on the smearing distance and thus the mesh characteristics. A simple maximum stress criterion is adopted 

in the present study 

 𝐹1𝑇 = (
𝜎11

𝑆1𝑇
)

2

,     𝐹2𝑇 = (
𝜎22

𝑆2𝑇
)

2

,     𝐹3𝑇 = (
𝜎33

𝑆3𝑇
)

2

. (7) 

where 𝑆𝐽𝑇is the tensile strength in the direction J. Assuming linear softening the damage parameter 𝐷 

evolves as  

 𝐷𝐽 =
𝜀𝑒𝑞

𝐽𝑖
(𝜀𝑒𝑞

𝐽𝑓
−𝜀𝑒𝑞

𝐽
)

𝜀𝑒𝑞
𝐽

(𝜀𝑒𝑞
𝐽𝑓

−𝜀𝑒𝑞
𝐽𝑖

)
,     𝐽 = 1𝑇, 2𝑇, 3𝑇, (8) 

where in case of 3D analysis the uniaxial tensile strain 𝜀 is replaced by an equivalent strain 𝜀𝑒𝑞 = √𝜀𝑖𝑖
2. In 

Eq. (8), 𝜀𝑒𝑞
𝐽𝑖

 represents the equivalent strain at the onset of failure whereas 𝜀𝑒𝑞
𝐽𝑓

 is the strain at complete 

separation, recall Fig. 3b.  

3.  Numerical experiments 

As an example, we consider the two periodic unit cells in Fig. 2 loaded in the transverse direction by the 

prescribed increments of the macroscopic tensile stress Σ𝐽𝐽 = Σ11  (J=3 is the fiber direction). The 

necessary material parameters are available in Tab. 2. The resulting macroscopic stress-strain curves are 
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plotted in Fig. 4a. The points associated with the assumed tensile macroscopic strength are marked. In 

cases, where no visible deviation from the linearity is detected, as is the case of SEPUC1, the tensile 

strength is defined at intersection of the stress-strain diagram with the line of the same elastic stiffness 

with 5 x 10
-5

 strain offset. The distributions of damage patterns for SEPUC1 associated with the assumed 

tensile strength and the maximum stress reached are drawn for illustration in Fig. 4b.  

a)    b)  

 a) Macroscopic stress-strain curves, b) Damage patterns at 𝛴11 = 𝛴1𝑇 and 𝛴11 = 𝛴11
𝑚𝑎𝑥. Fig. 4:

4.  Conclusions  

The presented contribution was concerned with the derivation of effective elastic properties and 

macroscopic tensile strength of unidirectional basalt fiber reinforced ceramic matrix composite through 

virtual numerical experiment. These parameters will be subsequently used in an independent meso-scale 

analysis of the textile laminate where yarns will be considered as homogeneous. Such an analysis will 

also call for the effective yarn fracture energy. This quantity can be derived from similar experiments but 

under strain control conditions to allow for softening evolution on macroscale. This study will be 

presented elsewhere.   
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