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Abstract: The paper presents the results of theoretical and numerical research on the stability of a partially 

tensioned column subjected to the Euler's load which is an external force applied between the ends of the 

slender system. Discrete element in a form of a translational spring which controls the longitudinal 

displacement was used on upper end of the system. The differential equations of motion and boundary 

conditions of considered column have been obtained on the basis of Hamilton’s principle and Bernoulli – 

Euler’s theory. In frame of this study the relationships between critical load and parameters such as 

translational spring stiffness or location of the external load were investigated. 
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1. Introduction 

The aim of the stability investigations is to determine the maximum loading force (in this case the 

longitudinal force) at which the system will not be destroyed due to the loss of stability. In the scientific 

literature stability of slender flexible systems is described for both conservative and non-conservative 

loads. Euler's load applied to the considered system is belongs to the conservative group. Uzny et.al. 

(2016) first began the research on the partially tensioned slender systems subjected to Euler's load. The 

load was placed between the ends of the fixed-fixed column and point of force location has changed along 

the length of the structure. The numerical calculations have shown that the first natural vibration 

frequency of the studied system depends both on the point of location and magnitude of the external 

force. Such systems are geometrically non-linear, in which the nonlinear component of the natural 

frequency depends on an amplitude of the vibration. In the papers (Tomski 1985, Uzny 2011) due to the 

geometric non-linearity of the considered systems the solution of the boundary problem was done with 

small parameter method. On the basis of mathematical model authors determined the bifurcation load 

where the investigated systems change the rectilinear form of equilibrium into the curvilinear one. 

Tomski and Kukla (1989) studied slender supporting systems subjected to eccentrically applied Euler’s 

load on both ends of the system. Additional discreet elements have great influence on critical or 

bifurcation load magnitude and natural vibration frequency of the systems. In the considered system the 

translational spring limits the axial displacement and can be adapted to the real structure to control the 

vibration frequency and the critical load. Discrete elements are widely used because of easy modelling of 

real objects. Spring elements are important for the study of vibration and stability of flexible systems. 

Properly chosen can affect the way of loss of stability if the slender system is subjected to compressive 

non-conservative load (Sundararajan 1976, Ryu et al. 2000, Kounadis 1981, 1983). Discrete components 

in the form of rotational springs are often used for crack modeling of flexible systems (Sokół 2014, Sokół 

and Uzny 2016). In the point of crack presence the reduction of local stiffness takes place thereby the 

discontinuity of the structure occurs, that has great influence on vibration frequency magnitude. These 

studies are important for the detection of cracks that may contribute to the destruction of the object.  

In this work the spring can be used to model vibration isolator placed at the upper fixing of the 

mechanical screw mounted in the vertical lift platform. The main scope of the studies presented in this 

paper is to determine the critical load of partially tensioned column in relation to the point of application 
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of the external force for different stiffness of translational spring which is used to optimize the considered 

system by means of longitudinal displacement control. 

2. Boundary problem  

The system presented in this paper models a screw along which moves a nut loaded by external force. The 

considered system (column) is shown in Fig. 1. The column is subjected to Euler's load. The direction of 

a force is always accordant to the undeformed axis of the column. External loading force P was applied at 

the point marked with the letter O. Applied load causes that the lower part of the column is compressed 

while the upper one is tensioned. In addition, longitudinal displacement of the tensioned part of the 

column is limited by the translational spring of stiffness C. In order to formulate the boundary problem, 

the overall length of the system is divided into two parts of length l1 and l2 respectively (l1 + l2 = l). The 

compressed part is indicated by the index 1 and tensioned one is designated by the index 2. The ends of 

the system (both on the compressed and tensioned section) are fitted in such a manner that their 

transversal displacements and the deflection angles are null. 

 

Fig. 1: Physical model of investigated system. 

In this study the problem of stability is considered in order to determine the critical force. 

Differential equations of transversal displacements and boundary conditions in the static case are as 

follows: 

- differential equations of transversal and longitudinal displacements 
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- geometrical and natural boundary conditions 
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where: Wi0(xi), Ui0(xi) – transversal and longitudinal static displacements, Ai - cross-sectional area,  

Ji - 2nd moment of area, Si0 - internal force in individual rods of column in the static case, (EJ)i - bending 

stiffness, (EA)i - compression stiffness; (EJ)1 = (EJ)2; (EA)1 = (EA)2. The index i refers to the i-th element 

of the column. 

Solutions of differential equations can be written as: 
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Internal forces in compressed part and tensioned one are determined with the following formulas: 
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Substitution of the solutions (3a, 3b) into boundary conditions of transversal displacements leads to the 

set of equations. Determinant of the matrix of coefficients equated to zero is an equation that is used to 

determine the critical forces. 

3. Results of numerical simulations 

The results of numerical calculations are presented in the non-dimensional form by means of the 

following parameters: 

 
 1

2

EJ

lPcr
cr  ; 

 1EA

Cl
c  ; 

l

l1  (4a-c)  

 

Fig. 2: The critical load λcr - point of external load application ζ relationship  

at different translational spring stiffness c. 

Change of critical load parameter λcr depends on the ζ coefficient what is shown in Fig. 2. The numerical 

calculations were performed at seven different magnitudes of the stiffness of the translational spring that 

affects the longitudinal displacements of the upper end of the column. The influence of the translational 

spring stiffness parameter on critical load parameter λcr is greater at greater magnitudes of ζ coefficient. 

The reduction of the spring stiffness decreases the critical load, especially when external load is placed in 

the upper part of a considered column. At lower localized points of an application of an external load  

(ζ = 0.1 – 0.2) the critical load decreases very rapidly. Fig. 2 shows very clearly that when the point of 

application of the external load is closer to the end of the column at which the spring is installed (oriented 

along the undeformed axis of the column) the greater control of critical load and transversal 
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displacements can be obtained. Interesting results were obtained when the point of the force application 

(nut position) is close to the half of the total length of the system   0.5. Close to the half of total length 

of the system when the spring stiffness is greater than zero c > 0 the presented curves on a plane cr -   

reach the local extreme - maximum. The maximum magnitude depends on spring stiffness. The maximum 

which is present at different stiffness of translational spring does not occur at the same value of the  

parameter. When an increas of spring stiffness takes place the maximum point which corresponds to the 

critical force occurs at lower . 

4. Conclusions 

In this study the system composed of a nut which moves along threaded rod was modeled. This system 

was modeled as a column subjected to Euler's load applied between the ends. The mathematical model 

takes into account the longitudinal elasticity of the support at one end. The study was carried out with 

numerical simulations with regard to the critical load of a column. On the basis of numerical simulations 

it was shown that the critical load of the considered system strongly depends on the stiffness of the 

applied longitudinal elastic support. An increase of the stiffness of the elastic element causes an increase 

of the loading capacity of the system. Between the ends of the column such a position of the point of 

force application (nut position) can be observed at which the extremum - maximum is present. The 

extreme point location depends on the spring stiffness which affects the longitudinal displacement of the 

column. During the design of threaded rod – moveable nut systems it must be taken into account that the 

change of critical load affects the critical rotational velocity which is not constant along the rod. 
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