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Abstract: The problem of active vibration control of weakly damped mechanical structures is potentially 

unstable modes of vibrations due to the positive feedback for some vibration modes. The paper will discuss 

the change of positive feedback on the negative one using all-pass discrete-time filters which are arranged in 

a cascade. The piezoelectric actuator as a source of force is used to damp vibration. It is well known that this 

actuator type has hysteresis.  
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1. Introduction 

The problem of the active vibration control of weakly damped mechanical structures consists in 

potentially unstable modes of vibrations. If the gain feedback is increased, then some of the poles of the 

transfer function recedes the stability boundary which is the imaginary axis, while the other poles 

approach it, even the boundary is crossed for a large feedback gain, and the system becomes unstable due 

to the positive feedback for these vibration modes. The paper will discuss the change of positive feedback 

to the negative one using all-pass discrete-time filters which are arranged in a cascade. Theory will be 

illustrated by an example of the active vibration control of the cantilever beam. 

2. Model of a mechanical structure 

As assumed the paper deal with the mechanical systems of N degrees of freedom. The properties of these 

mechanical systems describe the equation of motion. In addition to this equation, the system can be 

described by a modal or experimental model. The modal model represents the modal matrix U, which is a 

matrix of eigenvectors, and spectral matrix Λ, which is a diagonal matrix with the eigenvalues on the 

main diagonal. The experimental model is represented by measured frequency response functions (matrix 

H). The frequency transfer functions may be formed from all types of models as follows 
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where Nqrnvv qnrn ,...,1,,,, ,,   are the elements of the N-dimensional normalized eigenvector 

 TNnnn vv ,1, ,...,v  which is associated with the natural frequency 
n  and relative damping 

n . The 

coordinates Nnnn vvv ,2,1, ,...,,  determine a vibration or mode shape. The transfer function (1) is a sum of the 

transfer functions of the second order systems which correspond to the mode indexed by n. The product 

qnrnn vvk ,,  for given value of indexes r and q is called a modal constant and depends on the modal shapes 

for the natural frequency 
n . The modal constant plays a critical role for the type of feedback. 
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3. Active vibration control 

The purpose of the system for the active vibration control (AVC) is to compensate the effect of a 

disturbing external force on a vibration of the mechanical structure. The dampening effect of AVC can be 

assessed by changes in displacement, velocity or acceleration of the selected point of the structure. It can 

be the free end of the cantilever beam. The result of the active dumping is the minimum motion around 

the steady-state position and the minimum velocity or acceleration of vibrations. Mechanical structures 

are usually weakly damped. The analysis shows that for undamped systems there are absent terms of the 

odd powers of the complex variables s in the Laplace transfer function. The undamped system is at the 

margin of stability. It has been shown that the most appropriate controller for such systems uses a 

proportional feedback based on the velocity of the controlled displacement (Tůma et al., 2014, 2016). The 

set point (SP) for such closed-loop system is equal to zero. The gain of the velocity feedback is 

designated by T.  

There are two possible solutions, the collocated and non-collocated active vibration control. For the 

collocated system, the correcting force acts and the response is measured at the same point. For the non-

collocated system, it the correcting force acts at the point indexed by q and the vibrations are sensed at the 

point indexed by r (q ≠ r). An example of the non-collocated system is shown on the right of Fig. 1. The 

vibration of the free end element of this cantilever beam is sensed at the point r = 5, and the correcting 

force acts at the element just next to the clamped end, therefore q = 1. 

 

Fig. 1: Frequency response function jωH5,1(ω) and AVC system. 

The stability of the feedback system determines the position of the pole of the closed-loop transfer 

function. The beam is a stable system without control due to the natural damping; it does not start to 

vibrate by itself. The increase of the feedback gain causes one of the poles that are associated with the 

two lowest resonant frequencies moves away from the instability margin while the other pole is 

approaching or exceeding the stability margin. 

For the given beam, which is divided into 5 elements, and the assumption of the Rayleigh’s damping, the 

locus of the closed-loop poles are shown in Fig. 2 (Tůma et al., 2014). The root locus demonstrates the 

effect of the controller time constant T change on the system stability. The time constant varies from 0 to 

1E6. The poles are calculated as the roots of the polynomial  sTsH 1,51 .  

 
Fig. 2: Root locus to demonstrate the effect of the time constant T change. 

Because the degree of polynomial equals to ten in the variable s, the number of roots, i.e. the number of 

poles is ten as well. Five pairs of poles are complex conjugate. The stability margin crosses the pole for 

the mode n = 2 and the pole for the mode n = 4 approaches this margin. 

The analysis shows that the opposite sign of the modal constants reduces the damping effect of velocity 

feedback. There are two possible ways how to improve the efficiency of the active vibration control of 

weakly damped systems  
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• either control each vibration mode separately 

• or change positive feedback to the negative one. 

Both the methods indicate the transition of the controller design from the frequency range from zero to 

infinity to the control in a narrow frequency band (Šuránek et al., 2013, 2014). 

The first possible solution with the filter of the band-pass type is shown in Fig. 3. This arrangement of the 

active vibration control is called a Positive Position Feedback (PPF) controller, see Premont. In the 

mentioned figure, PPF is intended for two resonant frequencies with the negative and positive feedbacks. 

The input signal of the filter is a signal of the velocity type because a controller of the proportionality type 

is used. The velocity signal is obtained by integrating the acceleration signal with respect to time. The 

acceleration is measured on the free end of the beam as the controlled variable. The integration and band-

pass filtering together form a band-pass filter, whose transfer function has been designed previously by 

many authors (Premont, 1997). The filter is of the second order and therefore causes the least possible 

delay in the control loop. The output of this band-pass filter is amplified as necessary. The frequency 

range of the controller is restricted to a narrow band around the resonant frequency. 

 

Fig. 3: Principle of Positive Position Feedback (PPF). 

The second method for controlling the weakly damped systems is converting the positive feedback to the 

negative one with the use of an all-pass filter. This type of the frequency filter modifies the phase of the 

harmonic signal at the output compared to the input without changing the amplitude of the signal 

frequency components. The filter of this type of the first-order type changes the phase from 0 to   

radians in the frequency range from 0 to infinity. The all-pass filter of the second order which transfer 

function is defined by the formula (2) doubles the phase change. For the possibly unstable modes, it is 

necessary to change the phase by   at the resonant frequency n  of this vibration mode whose modal 

constant is to be changed from the negative to positive value. The advantage of this filter is the 

controllable rate of change of phase in comparison to the change of the frequency by setting the value of 

the relative damping parameter APF . 
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Fig. 4: All-pass filter frequency response (ksi = ξAPF). 

Since   1, jG nAPF  only a phase frequency response for two values of the damping parameter APF  

is shown on the left of Fig. 4. The all-pass filters are connected in series (cascade) with the controller as is 

shown on the right of Fig. 4. The count of these filters is as many as the count of the negative modal 

constants. The feedback is of the velocity type and needs an integrator for a sensor of the acceleration 

type to obtain the velocity signal. 
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4. Simulation results 

The effect of the all-pass filter on the damping of the cantilever beam vibration demonstrates the 

comparison of the control system response based on the use of two all-pass filters in the closed loop and 

without them as is shown in Fig. 5. One of the all-pass filters is tuned to the frequency of the second 

vibration mode and the second one to the frequency of the fourth vibration mode. The beam is excited by 

a short pulse after 1 second from the beginning of the simulation. During the time delay, the piezo 

actuator is gradually prestressed. The decaying vibration response without any active vibration control 

(AVC OFF) is shown on the left of Fig. 5. The effect of ACV without using the all-pass filter (ALL-

PASS FILTER OFF) is shown in the middle of Fig. 5. Due to the stability, the open-loop gain can be 

selected less or equal to 4. The serial connection of two mentioned all-pass filters in the cascade allows 

increasing the gain of the open-loop in such a way that the time constant T may be increased up to the 

value of 25 but less than 30 with correspondingly increasing the damping effect as is shown on the right 

of Fig. 5. 

 

Fig. 5: Decaying vibration without any AVC and two ways of the AVC. 

5. Conclusions 

The Matlab-Simulink model of the cantilever beam was designed using the method based on the modal 

analysis. Mechanical systems are generally weakly damped. Stable active damping cannot be designed by 

classical methods, which were developed for the synthesis of controllers. Some modes for these systems 

become potentially unstable. The paper describes the method that converts the positive feedback to the 

negative feedback using the all-pass filter. The effect of the all-pass filter on increasing the damping by 

shortening the impulse response has been verified by simulation approach. 
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