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Abstract: In this paper the instability problem of a stepped column loaded by the follower force is discussed. 

The column is composed of three sections with different cross-sectional areas. The connection of the each 

section is realized by means of the pins strengthened by the rotational springs. This type of connection allows 

one to simulate the different method of assembly of sections or even the defect (attenuation) in the 

connection. The boundary problem of the instability of the presented slender system has been formulated on 

the basis of the Hamilton’s principle and solved with small parameter method. The results of the numerical 

simulations are concern on the shape of the characteristic curves under an influence of the different cross 

sectional areas of the segments. 
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1. Introduction 

In this paper the instability of the slender system in the form of the column loaded by the follower force is 

presented. The introduced load causes that the column loses stability via divergence or flutter, depending 

on the follower factor. According to the nomenclature proposed by Kordas and Życzkowski (1963) the 

discussed type of external load can be classified as:  < 0 – anti-follower force, 0 < < 1 – sub-follower 

force,  = 1 – follower force,  > 1 – super-follower force.  

The studies on slender structures loaded by the follower force have been done by Przybylski and Sokół 

(2012). Authors have investigated the multimember column integrated with piezoceramic element. The 

piezo-rod induced the additional compressive or tensional forces, what lead to pre-stressing of the column 

and finally the shift of divergence/flutter instability regions has been obtained. Kukla (2009) have 

investigated the stepped cracked column. The size of the crack has been calculated on the basis of 

presentation written by Ostachowicz and Krawczuk (1991). Kukla has proposed the solution of the 

boundary problem by means of Green’s functions and obtained the characteristic curves of the cracked 

structure. Zamorska et.al (2015) have presented the analytical simulation done with Green’s function of 

the cracked beam with variable cross-sectional area and the numerical ones from FEM module of CATIA 

software. In the same time Cekus and Waryś (2015) have studied an identification of parameters of 

discrete-continuous models in the form of stepped columns. The chosen parameters of the systems have 

been found on the basis of free vibration frequency magnitude obtained from experimental studies. The 

proposed mathematical model has been solved according to the Lagrange multiplier formalism, while an 

optimization based on the genetic algorithm. The studies on the divergence/flutter instability regions have 

been also done by Tomski and Uzny (2011). Authors have studied a column with constant cross sectional 

area strengthened by the spring at the fixed end and loaded by the generalized Beck’s load and obtained 

the regions of divergence/flutter instability. Continuation of the studies has been presented in 2013. 

In this paper the stepped column loaded by follower force is investigated. The proposed structure is 

composed of three sections connected by the pins strengthened by the rotational springs. This type of 

connection allows one to simulate the different methods of assembly of sections. The presented results are 

concern on the shape of characteristic curves (external load – vibration frequency) and divergence/flutter 

instability regions in relation to the different cross-sectional areas of sections. 
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2. Boundary problem formulation 

The investigated system is presented in the Fig. 1. As shown, the structure is loaded by external force P 

localized on the top end of the cantilever column. Sections have lengths l1, l2, l3. Even and odd sections 

are connected by rotational springs.  
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Fig. 1: Investigated system. 

The boundary problem has been formulated on the basis of the Hamilton’ principle:  
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The kinetic and potential energies and components of work of conservative and non-conservative forces 

are as follows: 
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On the basis of the Hamilton’s principle and integration and variation operations inter alia the equations 

of motion in transversal direction are found:  

 ( , ) ( , ) ( , ) 0 1,2,3IV II

i i i i i i i iEJ W x t PW x t AW x t i      (3)  

The natural and geometrical boundary conditions are as follows: 
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The presented problem can be solved numerically by introduction of Eq. (3) into boundary conditions  

(4a – l). The obtained matrix determinant equated to zero leads to the transcendental equation on the basis 

of which the external load – natural vibration frequency relationship is computed.  

3. Results of numerical simulations 

The discussion of the results of numerical simulations is done by means of the non-dimensional 

parameters: 
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Fig. 2: Influence of cross sectional area on the 

shape of characteristic curves (cH = cL=10
3
, 

d1 = d2 = d3 = 0.33, 21 = 32 = 1). 

Fig. 3: Influence of cross sectional area on the 

shape of characteristic curves (cH = cL=10
3
, 

d1 = d2 = d3 = 0.33, 21 = 0.75, 32 = 1). 

 

Fig. 4: Influence of cross sectional area on the 

shape of characteristic curves (cH = cL=10
3
, 

d1 = d2 = d3 = 0.33, 21 = 0.75, 32 = 0.5). 

Fig. 5: Influence of cross sectional area on the 

shape of characteristic curves (cH = cL=10
3
, 

d1 = d2 = d3 = 0.33, 21 = 0.5, 32 = 2). 

 

The presentation of the results has been started from the case when all the segments have equal cross-

sectional area (Fig. 2). That allows on to check the validity of the proposed mathematical model. The 

column loses stability by divergence up to  = 0.5. Above that magnitude the flutter instability occurs. 

The highest flutter external load magnitude is 20.05; divergence 9.86. The reduction of cross sectional 

area of segments 2 and 3 (Fig. 3) results in an increase of first as well as second vibration frequency 

magnitude. At this configuration the reduction of divergence instability region has been noticed – the 

column changes divergence instability to flutter one at  > 0.4 in relation to the Fig. 1 configuration. The 
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change of cross-sectional area causes also the reduction of divergence and flutter maximum loading. The 

location of common point (point in which the characteristic curves at flutter instability are crossing) is 

shifted to the higher vibration frequency and is present at lower external load magnitude. The further 

reduction of the cross-sectional area of the top segment (Fig. 4) results in further maximum loading 

capacity drop, increase of free vibration frequency and shift of the common point (present at higher 

vibration frequency and at lower external load). The change of instability type occurs at  > 0.4. In the 

last case (Fig. 5) when the first and top segments have equal cross-sectional areas and the middle one is 

thinner than the others the lowest loading capacity has been observed. The free vibration frequency has 

lowered in relation to the Figs. 3 and 4. The instability change has now shifted to  > 0.5. At flutter 

instability the difference in maximum loading is the smallest from the all presented cases. 

4. Conclusions 

The following conclusions have been made on the basis of the results of the numerical simulations: 

– the control of divergence/flutter instability regions can be done by means of follower factor or by 

change of cross-sectional area of chosen segments, 

– the maximum loading as well as vibration frequency can be controlled both by the follower factor 

and cross-sectional area, 

– the location of common point at flutter instability changers in relation to the cross-sectional area of 

segments, 

In the future studies the different length of the elements as well as the connection stiffness between 

sections should be considered. Furthermore the higher components of natural vibration frequency can be 

solved by means of small parameter method. The verification of the proposed mathematical model can be 

done during the experimental studies, where the follower load is realized by the small scale jet engine. 
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