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Abstract: This paper is a continuation of the previous paper in which the author published the generalized 

mathematical model for forced vibration of Euler-Bernoulli beam covering discontinuities caused by 

concentrated loading, concentrated support, concentrated inertia forces or internal hinges. In this new 

paper, the generalized mathematical model is augmented to cover geometric nonlinearity of stress stiffening 

or weakening of the beam with the same type of discontinuities. This new analytic approach can offer three 

advantages. Firstly, steady-state responses of the beam can be found directly without doing modal analysis. 

Secondly, these responses of the beam are expressed in closed form. Thirdly, remaining continuity conditions 

at points of the discontinuities are fulfilled automatically. To give an example of using this new approach 

based on distributions, new closed-form expressions for forced steady-state response of pre-stressed simply 

supported beam with concentrated harmonic loading are presented. 
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1. Introduction 

Classical analytical method of calculating harmonic steady-state response of the beam is based on the 

following main steps (Rao, 2007 and Weaver et al., 1990). Firstly, we obtain a frequency equation for 

specific support conditions of the beam. Secondly, we solve the frequency equation for natural 

frequencies. Thirdly, we find orthogonal mode shapes corresponding to the natural frequencies of the 

beam. Finally, we express a forced response of the beam as a linear combination of the mode shapes by 

finding corresponding modal participation coefficients. 

Applying distributional derivative for discontinuous shear force, discontinuous bending moment, and 

discontinuous rotation of cross section of a beam, we can derive a mathematical model for forced 

transverse vibration of a beam with discontinuities caused by concentrated supports or concentrated 

masses or concentrated mass moments of inertia or concentrated transverse forces or concentrated 

moments situated between ends of the beam, or hinges connecting beam segments. This mathematical 

model can be solved like only one differential task without dividing the beam into segments where all the 

continuity conditions among adjoining segments are fulfilled automatically. Using this approach, we have 

only four integration constants irrespective of the number of the discontinuities. Applying distributions, 

we do not have to compute natural frequencies, mode shapes or modal participation coefficients in 

analyzing forced harmonic response of beams. 

Various ways of applying distributions can be found in papers by Kozien (2013), Wang (2007), Yesilce 

(2012), Zhao et al. (2016). 

2. The classical equation of motion for forced vibration of pre-stressed Euler-Bernoulli beam 

Equation of motion of a beam under distributed transverse force without discontinuities in shear force, in 

bending moment or in rotation of cross section of the beam is given by (Rao, 2007) 

 , (1) 
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where w(x, t) is transverse displacement of the beam centerline, A(x) is cross-sectional area, J(x) is area 

moment of inertia, E is modulus of elasticity (Young’s modulus), ρ is density, f(x,t) is the distributed 

transverse force and N is an axil load. 

3. A mathematical model for forced transverse vibration of pre-stressed Euler-Bernoulli beam 

with discontinuities 

In order to be able to express possible discontinuities in shear force, bending moment or in rotation of 

cross section along a centerline of a beam mathematically without cutting the beam into segments which 

would be without discontinuities, distributional derivative (Schwartz, 1972 and Štěpánek, 2001 and 

Kanwal, 2004) can be used.  

The generalized mathematical model for forced vibration of Euler-Bernoulli beam with various 

discontinuities without axial loading was published in (Sobotka, 2016) containing distributional 

derivatives of shear force, bending moment and cross section rotation. 

By augmenting the classical part of distributional derivative of shear force in accordance with Eq. (1), 

new generalized mathematical model for forced vibration of Euler-Bernoulli beam with discontinuities 

allowing for stress stiffening (in case of tensile axial load) or stress weakening (in case of compressive 

axial load) can be obtained as follows: 

 , (2)  

 , (3) 

 , (4) 

 . (5)  

The right-hand side of Eq. (2) is the distributional derivative of shear force with respect to x where N is 

axial load (positive if tensile, negative if compressive), ri(t) is a reaction force at ith concentrated support 

at x = ai (0 <ai  < L), L is total length of the beam, mi is a concentrated inertia mass at x = bi (0 <bi  < L), 

fi(t) is a concentrated transverse load at x = ci (0 < ci < L), δ(x - ai) denotes Dirac’s singular distribution 

moved to a point of the specific discontinuity, n1 is a number of point supports (without end supports), if 

any,  n2 is a number of concentrated inertia masses (without end masses), if any, and n3 is a number of 

concentrated transverse loads (without end loads), if any. 

The right-hand side of Eq. (3) is the distributional derivative of bending moment with respect to x where 

Ji is a concentrated mass moment of inertia at x=bi , if any, si(t) is a concentrated moment load at  

x = di (0 < di < L), and n4 is a number of concentrated moment loads (without end moment loads), if any. 

The right-hand side of Eq. (4) is the distributional derivative of cross section rotation with respect to x 

where ψi(t) is a magnitude of jump discontinuity in rotation of the cross sections at a hinge connecting 

segments of the beam at x = ei (0 < ei < L), and n5 is a number of internal hinges, if any. 

4. Forced vibration solution 

Supposing harmonic time variation of loading as 

,      , 

and solution to Eqs. (2) to (5) as 
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,    ,     ,   

,            ,   

where ω is circular frequency of vibration, and denoting amplitudes of vibration at points with 

concentrated inertia masses and moments of inertia as  

 ,           , (6) 

Eqs. (7) to (10) can be derived for unknown general amplitudes of deflection, wa , rotation of cross 

section, φa , bending moment, Ma , and shear force, Qa , for a uniform beam as: 

 ,  (7)  

 , (8) 

 , (9) 

 . (10) 

By using Laplace transform method, general solution to Eqs. (7) to (10) can be computed, in which 

integration constants are in the form of initial parameters. 

As an example of using the proposed method, new closed-form expressions for the amplitude of the 

deflection, Eq. (11), and for the amplitude of the bending moment, Eq. (12), of forced steady-state 

response of simply supported (pinned-pinned) uniform beam subjected to a concentrated transverse 

harmonic force, F.sin(ω.t), at x=a, and to a constant axial force, N, have been obtained as follows:  

 

, (11) 

 , (12) 

where 

  ,           , (13) 

  ,       . (14) 

Notation H(x-a) in Eq. (11), (12) is used for Heaviside’s unit step function. When finding a value of the 

defection at the point of the concentrated load, it is important for a limit of the right hand side of Eq. (11) 

to be evaluated as follows: 
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 . (15)  

Correctness of Eq. (11), (12), (15) has been verified by using FEM. 

5. Conclusions 

Equations (2) to (5) making the generalized mathematical model for forced response of pre-stressed 

Euler-Bernoulli beam with different discontinuities are the first contribution of this paper to vibration 

analysis of beams. 

In this model, each unknown dependently variable quantity has got its own distributional derivative 

covering specific jump discontinuities where Dirac‘s singular distribution, denoted here as δ(x), is always 

moved to the point with a specific jump discontinuity, and multiplied by a magnitude of the discontinuity. 

Discontinuities in shear force are supposed to be owing to idealized concentrated supports or inertia 

masses or concentrated transverse forces situated between ends of the beam. Likewise, discontinuities in 

bending moment are assumed to be due to idealized concentrated moments of inertia or concentrated 

moment loads situated between ends of the beam. Discontinuities in cross section rotation may be caused 

by real hinges connecting beam segments. 

To be able to find forced steady-state response of Euler-Bernoulli beams analytically with discontinuities 

mentioned allowing for stress stiffening or weakening of the beam, equations (7) to (10) have been 

derived as the second contribution of this paper for unknown amplitudes of shear force, bending moment, 

cross section rotation and deflection of the beam. When using these equations, boundary conditions are 

given directly, which means that internal forces are not expressed through the deflection and its 

derivatives. 

By using this proposed approach, new equations (11), (12), (15) for forced steady-state response of pre-

stressed simply supported beam subjected to concentrated transverse harmonic loading have been 

obtained as the third contribution. These new expressions have got the closed form, which would not be 

possible if modal analysis were used. The right hand side of Eq. (11), (12), (15) is exact in the sense of 

Euler-Bernoulli theory. The effect of stress stiffening in Eq. (11), (12), (15) is covered by choosing a 

positive value for axial force. The effect of stress weakening in Eq. (11), (12), (15) is covered by 

choosing a negative value for axial force not allowing buckling of the beam. 
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