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Abstract: The problem on an arbitrary oriented crack in a strip is solved. The new approach for the 

elasticity problems with the curvilinear defects is proposed. With the help of the generalized scheme of the 

integral transformation method the problem is reduced to the singular integral equation, which effective 

approximate solution can be constructed.  
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1. Introduction 

The problems on the stress concentration near the defects (the cuts, the cracks, the inclusions) play an 

important role in the modern fracture mechanics. The scheme of the reduction of the elasticity boundary 

valued problems with a defect to the integral equations, based on the integrals transformation, is well 

known. In this scheme the defects are inscribed in a certain coordinate system, apparatus of integral 

transformation is used or perpendicular or parallel to the defect. In proposed paper this methodic is 

generalized on a case of a curvilinear defect on the example of the antiplane problem for a strip, 

weakened by an arbitrary oriented crack. It is shown that the problem is reduced to the known singular 

equation allowing the effective approximate solving. 

2. The problem’s statement 

Let’s consider the antiplane problem for a strip { |𝑥|<  ∞ , |𝑦| < 𝑙 }, the edges of it are fixed. The crack 

{ 𝑦 =  𝜑(𝑥), |𝑥| < 1 } is situated inside the strip. The load of intensity 𝑇 (𝑥) is applied to the branches of 

the crack along axis 𝑂𝑍. It is supposed that parameters of crack are such that it is situated inside the strip 

and don’t go to the bound. Without loss of generality (it is required only that function 𝜑(𝑥) should be 

continuous and differentiating on the segment [−1, 1] ) the final formulas we give for the case of straight 

crack 𝜑(𝑥) = 𝑘𝑥 + 𝑐. It is necessary to estimate the stress intensity factor near the crack’s ends. The 

mathematics statement of the formulated problem is following one: 
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 (1) 

Here 𝑊(𝑥, 𝑦) is displacement of point with the coordinates (𝑥, 𝑦) along axis 𝑂𝑍. The displacements is 

continuously different table till the bound of given area, except the angle points – ends of the crack, 

where 𝑊(𝑥, 𝑦) should be continuous. 
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Let’s designate 𝜈 as the normal direction to the curve 𝑦 = 𝜑(𝑥) and 𝑠 as the tangent direction to this 

curve 𝜈, 𝛼 is an angle between lines 𝑂𝑋 and 𝑂𝑆. One can get that 𝑡𝑔(𝛼) = 𝜑′(𝑥) and  

 {

𝜕𝑊

𝜕𝑆
= [1 + (𝜑′(𝑥))

2
]−1[

𝜕𝑊

𝜕𝑥
+ 𝜑′(𝑥)

𝜕𝑊

𝜕𝑦
] 

𝜕𝑊

𝜕𝜈
= [1 + (𝜑′(𝑥))

2
]−1[−𝜑′(𝑥)

𝜕𝑊

𝜕𝑦
+

𝜕𝑊

𝜕𝑦
]
 (2) 

Let’s note, that if a crack is the straight one and is parallel to one of the coordinate axis, then with the 

generalized scheme of the integral transformation method the problem will be reduced to a singular 

integral equation. This equation can be solved and one can get the effective numerical solution. At the 

case of the arbitrary oriented curvilinear crack the additional difficulties are appeared. They are connected 

with the changing of the differentiation and integration operations’ order at the integral 

∫
𝜕𝑊

𝜕𝑥
sin 𝜆𝑦

𝑙

−𝑙

𝑑𝑦 

when function 𝑊(𝑥, 𝑦) is the discontinuous one. This work is dedicated to the overcoming of these 

difficulties.  

3. Reduction to the one dimensional problem 

Let’s apply to the boundary problem (1) the finite 𝑠𝑖𝑛-Fourier transformation with regard to variable 𝑦 

𝑊𝜆(𝑥) =  ∫ 𝑤(𝑥, 𝑦)𝑠𝑖𝑛
𝑙

−𝑙

𝜆(𝑦 + 𝑙)𝑑𝑦 ; 

𝑊(𝑥, 𝑦) =
1

𝑙
 ∑𝑊𝜆𝑘

(𝑥) sin 𝜆𝑘(𝑦 + 𝑙)

∞

𝑘=1

 

𝜆𝑘 =
𝑘𝜋

2𝑙
 

Previously one should change the last condition in (1) on the next one 

  

<
𝜕𝑊

𝜕𝜈
>|
𝑦=𝜑(𝑥)

 =
𝜕𝑊

𝜕𝜈
(𝑥,𝜑(𝑥)−0)−

𝜕𝑊

𝜕𝜈
(𝑥,𝜑(𝑥)+0) = 0

<𝑊>|𝑦=𝜑(𝑥)=𝑊(𝑥,𝜑(𝑥)−0)−𝑊(𝑥,𝜑(𝑥)+0)=𝜒(𝑥)
  (3) 

where 𝜒(𝑥) is the unknown function, describing the jump of the function 𝑊(𝑥, 𝑦) during the transition 

across the crack. Than 𝜒(𝑥)  ≡ 0 when |𝑥| > 1. Let’s use the integrals: 

∫
𝜕2𝑊

𝜕𝑦2
sin 𝜆𝑦 𝑑𝑦

𝑙

−𝑙

= <
𝜕𝑊

𝜕𝑦
>|

𝑦=𝜑(𝑥)

sin(𝜆𝜑) − 𝜒(𝑥)𝜆 cos(𝜆𝜑) − 𝜆2𝑊𝜆(𝑥) 

∫
𝜕2𝑊

𝜕𝑥2
sin 𝜆𝑦 𝑑𝑦

𝑙

−𝑙

= −𝜑(𝑥)<
𝜕𝑊

𝜕𝑥
>|

𝑦=𝜑(𝑥)
sin(𝜆𝜑) −

𝑑

𝑑𝑥
[𝜑′(𝑥)𝜒(𝑥)𝜆 sin(𝜆𝑥)] + 𝑊𝜆′′(𝑥) 

With regard to the condition (3) one get the one-dimensional boundary problem  

{
 
 

 
 (

𝑑2

𝑑𝑥2
− 𝜆2)𝑊𝜆(𝑥) = ℱ𝜆(𝑥), |𝑥| < ∞

𝑊𝜆,𝑊𝜆′|𝑥→∓∞ → 0,ℱ𝜆(𝑥) =  𝜒(𝑥)𝜆 cos(𝜆𝜑) +
𝑑

𝑑𝑥
[𝜑′(𝑥)𝜒(𝑥)𝜆 sin(𝜆𝑥)]
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Its solution can be written in the form:  

𝑊𝜆(𝑥) =  ∫ ℱ𝜆(𝜉)G𝜆(𝑥, 𝜉)
+∞

−∞

𝑑𝜉,     G𝜆(𝑥, 𝜉) =  −
1

2𝜆
𝑒−𝜆|𝑥−𝜉| 

𝑊𝜆(𝑥) =  ∫ 𝜒(𝜉)[𝜆 cos(𝜆 𝜑(𝜉))G𝜆(𝑥, 𝜉)
1

−1

𝑑𝜉 − 𝜑′(𝜉)sin (𝜑(𝜉))
𝜕𝐺𝜆
𝜕𝜉

(𝑥, 𝜉)]𝑑𝜉 

After application of the inverse integral Fourier’s transformation one derives 

  𝑊(𝑥, 𝑦) =  ∫ 𝜒(𝜉)
1

−1

𝜕𝐺𝜆

𝜕𝑣𝜉
(𝑥, 𝑦, 𝜉, 𝜑(𝜉))√1 + [𝜑′(𝜉)]2𝑑𝜉 (4) 

where derivative 
𝜕

𝜕𝑣𝜉
 is defined by the second formula in (2) after variable changing of the variables (𝑥, 𝑦) 

on the variables (𝜉, 𝜂).  

4. The weak convergent part extraction 

The function G(𝑥, 𝑦, 𝜉, 𝜂) has form 

{
 
 

 
 
G(𝑥, 𝑦, 𝜉, 𝜂) =

1

𝑙
∑ (−

1

2𝜆𝑚
𝑒−𝜆𝑚|𝑥−𝜉|) sin 𝜆𝑚(𝑦 + 𝑙)

∞

𝑚=1

sin 𝜆𝑚(𝜂 + 𝑙)

𝜆𝑚 =
𝑚𝜋

2𝑙

 

Function G(𝑥, 𝑦, 𝜉, 𝜂) can be expressed through the elementary functions with the help of formula 

(Dwight, 1961) 

∑
1

𝑚
𝑒−𝑚𝐴 sin(𝑚𝐵) sin(𝑚𝐶) =

1

4
ln
𝑠ℎ2 (

𝐴
2) + sin

2 𝐵 − 𝐶
2

𝑠ℎ2 (
𝐴
2
) + sin2

𝐵 + 𝐶
2

∞

𝑚=1

  

G(𝑥, 𝑦, 𝜉, 𝜂) = Φ(𝑥 − 𝜉, 𝑦 − 𝜂) + G∗(𝑥, 𝑦, 𝜉, 𝜂) 

  G∗(𝑥, 𝑦, 𝜉, 𝜂) = 𝜓(𝑥 − 𝜉, 𝑦 − 𝜂) + Ω(𝑥 − 𝜉, 𝑦 + 𝜂 + 2𝑙) (5) 

Ψ(𝑥, 𝑦) =
1

4π
ln[𝑐ℎ(𝛽𝑥) − cos ( 𝛽𝑦)];Φ(𝑥, 𝑦) =

1

2𝜋
𝑙𝑛√𝑥2 + 𝑦2 

Ω(𝑥, 𝑦) = −Ψ(𝑥, 𝑦) − Φ(𝑥, 𝑦) 

Let’s note that the formula (4) satisfies all conditions of the boundary value problem (1) except last one 

for any values of the function 𝜒(𝜉). After it one will derive the integral equation on the finite interval  

(-1, 1) with regard to the unknown function 𝜒(𝑥) 

  lim
𝑦→𝜑(𝑥)≠0

∫ 𝜒(𝜉)
1

−1

𝜕2𝐺

𝜕𝑣𝑥𝜕𝑣𝜉
(𝑥, 𝑦, 𝜉, 𝜂)√1 + [𝜑′(𝑥)]2𝑑𝜉 = √1 + [𝜑′(𝑥)]2𝑇(𝑥), |𝑥| < 1 (6) 

All transformations were done for the curvilinear crack 𝑦 = 𝜑(𝑥). To simplify the calculations let’s take 

𝑦 = 𝑘𝑥 + 𝑏. As a result, after extraction of the singular kernel, one will derive the equation 

𝑑2

𝑑𝑥2
∫ 𝜒(𝜉)
1

−1

ln|𝑥 − 𝜉| 𝑑𝜉 + ∫ 𝜒(𝜉)
1

−1

𝑅(𝑥, 𝜉)𝑑𝜉 = √1 + 𝑘2𝑇(𝑥), |𝑥| < 1 

  
𝑅(𝑥, 𝜉) = (1 + 𝑘2)Ω22(𝑥 − 𝜉, 𝑘(𝑥 + 𝜉) + 4𝜉) + 𝑅

∗(𝑥 − 𝜉)

𝑅∗(𝑥 − 𝜉) = [(1 − 𝑘2)Ω22(𝑥 − 𝜉, 𝑘(𝑥 − 𝜉)) − 2𝑘Ω12(𝑥 − 𝜉) −
1

2𝜋
(𝑥 − 𝜉)2]

  (7) 
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Ω12(𝑧) =
1

4𝜋
 
𝛽2𝑠ℎ(𝛽𝑧)sin (𝛽𝑧)

(𝑐ℎ(𝛽𝑧) − cos(𝛽𝑘𝑧)2
 ,    𝛽 =

𝜋

2𝑙
 

Ω22(𝑧, 𝑦) = −
1

2𝜋
𝛽2  

(𝑐ℎ(𝛽𝑧) cos(𝛽𝑦) − 1)

(𝑐ℎ(𝛽𝑧) − cos(𝛽𝑦))2
  

It is possible to show that  

lim
𝑧→0

𝑅∗(𝑧) =
1

2
(𝑎 + 𝑘2) 

If to use the expansion of the function 𝑅∗(𝑥, 𝜉) in the series, it is possible to show that the function is 

continuous one, and moreover, it is infinitely differentiable at point z = 0. Hence, 𝑅(𝑥, 𝜉) is infinitely 

differentiable too. It allows to use the orthogonal polynomials methods (Popov, 2007) for the equation (7) 

solving and to find the stress intensity of factor near crack’s ends. 

5.  Conclusions 

Thus, the stated problem is reduced to the singular integral equation, allowing the construction of the 

effective approximate solution (Popov, 1982). 
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