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NON-HOLONOMIC PLANAR AND SPATIAL MODEL
OF A BALL-TYPE TUNED MASS DAMPING DEVICE

J. Néprstek*, C. Fischer™™

Abstract: The area of tuned mass dampers is a wide field of inspiration for theoretical studies in non-linear
dynamics and dynamic stability. The studies attempt to estimate behaviour of diverse damping devices and
their reliability. The current paper deals with the response of a heavy ball rolling inside a spherical cavity
under horizontal kinematic excitation. The non-linear system consists of six degrees of freedom with three
non-holonomic constraints. The contact between the ball and the cavity surface is supposed to be perfect
without any sliding. The mathematical model using the Appell-Gibbs function of acceleration energy is
developed and discussed. Comparison with previous planar (SDOF) model which is based on the Lagrangian
procedure is given. The system has an auto-parametric character and therefore semi-trivial solutions and
their dynamic stability can be analysed. The most important post-critical regimes are outlined and
qualitatively evaluated in resonance domain. Numerical experiments were performed when excitation
frequency is slowly swept up and down to identify different modes of response. Some applications in civil
engineering as a tuned mass damper, which can be used on slender structures, are mentioned. The proposed
device is compared with a conventional pendulum damper. Strengths and weaknesses of both absorbers types
are discussed.
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1. Introduction

Various types of passive vibration absorbers are regularly used in civil engineering for suppression of
wind induced vibration. Transmission towers, TV masts and other slender structures exposed to wind
excitation are usually equipped by such devices. Usual pendulum-style passive absorbers, see,
e.g., (Haxton, 1974), utilize the auto-parametric resonance for their damping effect. Although they are
very effective and reliable their application can be limited by several disadvantages. Dimensions of the
pendulum and namely its suspension length cannot be neglected or minimized and it could easily happen
that the structure cannot accommodate this device. This is particularly true for existing structures, where
an absorber should be installed as a supplementary equipment. Also horizontal constructions, like foot
bridges, usually cannot include a pendulum-style absorber. Moreover, the complete installation has to
remain accessible to allow a regular maintenance.

The ball-type absorber represents an alternative solution, which is less spatially-demanding and
practically maintenance-free. The basic principle comes out of a rolling movement of a metallic ball of a
radius r inside of a metallic rubber coated spherical cavity of a radius R > r, Fig. 1a. The system can be
closed in an airtight case. Its vertical dimension depends only on the dimension of the rolling ball and
thus the assembly can be relatively very small. Such device can be used in cases where a pendulum
absorber is inapplicable due to lack of vertical space or difficult maintenance.

First papers dealing with the theoretical and practical aspects of ball absorbers have been published by
Pirner and Fischer (1994, 2000). The first analysis of the problem on the basis of the rational dynamics
has been published by the authors in (Naprstek and Pirner, 2002) and later extended in (Naprstek et al.,
2011). The approach in the referenced papers was based on planar model, constructed using the
Hamiltonian functional with non-holonomic constraints and the respective Lagrangian governing system
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Fig. 1: a) Outline of the ball absorber; b) Scheme of the simplified 2D model; c) The spherical pendulum.

in 2D, cf. Fig. 1b. The theoretical derivation together with its numerical evaluation was compared to
practical application up to the state of the realization including some results of long-term measurements.

Dynamics of the real ball absorber is significantly more complicated in comparison to the pendulum one,
Fig. 1c. Movement of the ball cannot be described in a linear state although for the first view its
behaviour is similar to the pendulum absorber type. A number of problems that are related with
movement stability, auto-parametric resonances, etc., originate from the spherical cavity and ball surface
imperfections. The ball moving inside the spherical cavity is very sensitive to the stability loss of its
movement in forcing direction. However, this type of motion is requested, as it determines efficiency of
the damper. Due to probability of the stability loss, which is much higher than of the spherical pendulum,
semi-trivial states should be carefully analysed including a large variety of post-critical processes.

The fully spatial model, unlike the 2D approximation, does not allow the usual approximations of the
exact formulations. The deflection ¢ of the pendulum, cf. Fig. 1c, can be assumed relatively small, it is

usually lower than 20 — 30°, and the approximations in form of a short Taylor series are acceptable:
sing =~ ¢ —1/6¢p3,cosp ~ 1 —1/2¢?%. On the other hand, movement of the ball within the cavity
should respect the full expressions due to the fact that the ball deflection can reach nearly the “equator” of
the cavity. This fact prevents to get through the matter by an analytical way, but suitable combination of
both numerical/analytical procedures is still possible and, moreover, the model presented in this
contribution does not include any limits of the response amplitudes.

Authors tried to formulate this problem in the past by a classical way constructing the Hamiltonian
functional with non-holonomic constraints. However, the resulting Lagrangian governing system provides
the differential system which is too complicated and its physical interpretation can be multivalent. For
easier analysis is the problem formulated using Appell-Gibbs function. Its main advantage consists in
easier problem definition and more transparent introduction of non-holonomic constraints.

2. Mathematical models

2.1. Simple planar model

The dynamic character of the complete structure is modelled by a linear SDOF system represented by a
total mass m (which includes the structure, cavity and the ball) and stiffness C. The ball with mass M is
moving freely in a vertical plane in a cavity directly attached to the structure, i.e., 2DOF system should be
investigated as it is outlined in Fig. 1b. For full derivation see (Naprstek et al., 2011).

Mr?

¢ + Kby + kwlsing + k- cosp =0 w12w=%, K= T (1a)
. 2 : ; M M
ugcosp —up?sing + 1+ WS¢+ bl +ohl=plt) p=—, wh=—. (1b)

Here g it the gravitational acceleration and J = 2/5 - Mr? is the central inertia moment of the ball.

The theoretical efficiency of the absorber can be assessed using its frequency characteristics for excitation
by harmonic force p(t). However, to relate the planar model to the fully spatial one, only the first
equation (1a) regarding the ball rolling in the cavity will be used here. The action of the elastic structure
is replaced by the kinematic excitation ¢ = , - sin wt.
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2.2. Appell-Gibbs approach to the full spatial model

In the spatial model of the ball absorber (Fig. 1a) is the Appell-Gibbs approach used to formulate the
governing non-linear differential system. The basis is the Appell function (often referred to as an energy
acceleration function), which is defined as a function of six components characterizing motion of the stiff
body in 3D:

1, .. . . 1. : :
S = EM(u(Z;x +iigy, +ig,) + ~J(@F + o5 + @), (2

where M is the mass of the ball, j = 2/5 - Mr? central inertia moment of the ball with respect to its
centre, w_angular velocities of the ball with respect to its centre, ug_displacements of the ball centre with
respect to absolute origin O, uc_displacements of the contact point with respect to origin 0, and u,_
prescribed movement of the cavity with respect to origin O.

Following the detailed derivation of the equations of motion the governing system reads (Naprstek and
Fischer, 2016)

Ucy = Wy, (uc; —R) — WzUcy (3a)
uCy = WylUcy — Wyx(Uc; — R) (3b)
Uc, = WyUcy — WylUcy (3c)

Jspwy = — (ﬁAy + p(wgticx — wxch)) (ucz — R) —ucy (g + p(wyticy — wyqu)) — pDgx/M (43)

Jspwy = — (ﬁAx + p(wyitc, — wzuCy)) (ucz — R) + ucy (9 + p(wxlicy — wyi‘Cx)) — pDy/M (4b)

Jspw, = — (qu + p(wyuCZ - wzuCy)) Ucy — (ﬁAy + p(wylicy — wquz)) ucx —pDy /M (4c)
where: J; = (J + Mp? R®)/(Mp?), p =1 —r/R and terms D;_cover influence of damping.

Damping in the contact point has to be treated separately for rolling and spinning component. Supposing
that no slipping arises in the contact, the dissipation process can be approximated as proportional to the
relevant components of the angular velocity. Thus, the damping terms in Egs. (4) include coordinate
transformation from local coordinates of the ball distinguishing rolling and spinning movement.

2.4. Comparison of the models

Although the models aim to describe a single real system, their difference is more than dimensional
settings. The simplified model was set up to describe interaction of the ball absorber and the structure, its
auto-parametric character originates from coupling between the ball, cavity and elastic structure. The
spatial model in the current state describes only the movement of the ball in the cavity and assumes only
the kinematic excitation of the cavity. The auto-parametric character follows from interaction of the
individual x and y components. Hence only the equation (1a) from the planar model can be directly
related to the 3D model.

In order to show correspondence of the full model (3, 4) and Eg. (1a) the following conditions will be
assumed, which assure the planar movement of the ball in the cavity:

Ucy = 0,0, = 0,0, =0 5)

Introducing conditions (5) into Egs (3,4) (without damping), three equations are fulfilled trivially and
only Eqgs (3a,3c,4b) remain active. Elimination of w, from Eq. (4b) using the derived Eq. (3a) and

substitution of the geometric relation u., = R — V(R? — uZ, ) gives the single equation which involves

only ucy:
. _ Mp 2 2\ 2 2 qu‘ll%
Ucxy = J+Mp2R2 ((qu —R )qu — GUcx /R —Ucx | — Rz—u(z:z (6)

Transformation of the translational motion to rotation u., = R sin ¢ restores the equation (1a).

Performance of both models is compared in Fig. 2. The system parameters used: M = 1,R = 1,r = 1/2,
the excitation amplitude ¢, = 0.1 and damping: b, = a = 0.1, = 0.01. Symbols «, § are the damping
coefficients in the spatial model for rolling and spinning, respectively. The left plot shows the positions of
the turning points in lateral direction depending on the excitation frequency w. Because the ball in the
maximal motion crosses the equator of the cavity, the actual extremal value of the coordinate can become
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Fig. 2: Resonance behaviour of planar and spatial models. Maximal responses in lateral (left)
and transversal (right) direction. Planar model — thick lines, spatial model — thin lines and dots.

smaller for increasing amplitudes (cf. concave part of the curve in the left plot). The resonance curve
corresponding to the planar model is shown in the left plot as the thick solid line a; — a; with thick dotted
overhanging part a,. The thin dotted vertical lines delimit area where the resonance curve shows two
stable solutions, lines a;, a,. The curves b, — bg in the both plots correspond to the spatial model. The parts
b; — b, show planar (semi-trivial) solution which can be directly related to the result of the planar model.
The branches bs and bg correspond to spatial periodic (be) or chaotic (bs) movement of the ball, as can be
seen comparing both plots. It is worth to note that the periodic branch bs continues over right border of
the plot. It represents stable cycling which approaches equator of the cavity for increasing excitation
frequency. From the left part of Fig. 2 can be seen that the planar model underestimates response and
width of the resonance area. Moreover, it cannot encompass the upper spatial branch of the response (bg),
which can have devastating effect on the structure.

3. Conclusions

Two approaches to modelling of behaviour of the ball-style tuned mass damper were presented and
compared. Whereas the non-linear planar approach models the ball in the cavity using a single DOF, the
spatial one comprises six degrees of freedom with three non-holonomic constraints. The equations of the
motion in the spatial model of the ball are derived using the Appell-Gibbs function of acceleration energy.
The Appell-Gibbs formulation of a non-holonomic system dynamics approved excellent efficiency in
comparison with a conventional way being based on Lagrangian differential system and non-holonomic
constraints adjoined via indefinite Lagrange multipliers. The resulting system has an auto-parametric
character, it permits to formulate the semi-trivial (planar) solution. The models were numerically analysed
with respect to harmonic horizontal excitation. The interval of frequencies leading to instability of the
semi-trivial solution was shown and studied and its dangerous character was pointed out.
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